Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christofer Lendel is active.

Publication


Featured researches published by Christofer Lendel.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Stabilization of neurotoxic Alzheimer amyloid-β oligomers by protein engineering

Anders Sandberg; Leila M. Luheshi; Sofia Söllvander; Teresa P. Barros; Bertil Macao; Tuomas P. J. Knowles; Henrik Biverstål; Christofer Lendel; Frida Ekholm-Petterson; Anatoly Dubnovitsky; Lars Lannfelt; Christopher M. Dobson; Torleif Härd

Soluble oligomeric aggregates of the amyloid-β peptide (Aβ) have been implicated in the pathogenesis of Alzheimer’s disease (AD). Although the conformation adopted by Aβ within these aggregates is not known, a β-hairpin conformation is known to be accessible to monomeric Aβ. Here we show that this β-hairpin is a building block of toxic Aβ oligomers by engineering a double-cysteine mutant (called Aβcc) in which the β-hairpin is stabilized by an intramolecular disulfide bond. Aβ40cc and Aβ42cc both spontaneously form stable oligomeric species with distinct molecular weights and secondary-structure content, but both are unable to convert into amyloid fibrils. Biochemical and biophysical experiments and assays with conformation-specific antibodies used to detect Aβ aggregates in vivo indicate that the wild-type oligomer structure is preserved and stabilized in Aβcc oligomers. Stable oligomers are expected to become highly toxic and, accordingly, we find that β-sheet-containing Aβ42cc oligomers or protofibrillar species formed by these oligomers are 50 times more potent inducers of neuronal apoptosis than amyloid fibrils or samples of monomeric wild-type Aβ42, in which toxic aggregates are only transiently formed. The possibility of obtaining completely stable and physiologically relevant neurotoxic Aβ oligomer preparations will facilitate studies of their structure and role in the pathogenesis of AD. For example, here we show how kinetic partitioning into different aggregation pathways can explain why Aβ42 is more toxic than the shorter Aβ40, and why certain inherited mutations are linked to protofibril formation and early-onset AD.


Journal of Molecular Biology | 2012

Inhibition of amyloid formation.

Torleif Härd; Christofer Lendel

Amyloid is aggregated protein in the form of insoluble fibrils. Amyloid deposition in human tissue-amyloidosis-is associated with a number of diseases including all common dementias and type II diabetes. Considerable progress has been made to understand the mechanisms leading to amyloid formation. It is, however, not yet clear by which mechanisms amyloid and protein aggregates formed on the path to amyloid are cytotoxic. Strategies to prevent protein aggregation and amyloid formation are nevertheless, in many cases, promising and even successful. This review covers research on intervention of amyloidosis and highlights several examples of how inhibition of protein aggregation and amyloid formation has been achieved in practice. For instance, rational design can provide drugs that stabilize a native folded state of a protein, protein engineering can provide new binding proteins that sequester monomeric peptides from aggregation, small molecules and peptides can be designed to block aggregation or direct it into non-cytotoxic paths, and monoclonal antibodies have been developed for therapies towards neurodegenerative diseases based on inhibition of amyloid formation and clearance.


Proceedings of the National Academy of Sciences of the United States of America | 2003

An affibody in complex with a target protein: Structure and coupled folding

Elisabet Wahlberg; Christofer Lendel; Magnus Helgstrand; Peter Allard; Vildan Dincbas-Renqvist; Anders Hedqvist; Helena Berglund; Per-Åke Nygren; Torleif Härd

Combinatorial protein engineering provides powerful means for functional selection of novel binding proteins. One class of engineered binding proteins, denoted affibodies, is based on the three-helix scaffold of the Z domain derived from staphylococcal protein A. The ZSPA-1 affibody has been selected from a phage-displayed library as a binder to protein A. ZSPA-1 also binds with micromolar affinity to its own ancestor, the Z domain. We have characterized the ZSPA-1 affibody in its uncomplexed state and determined the solution structure of a Z:ZSPA-1 protein–protein complex. Uncomplexed ZSPA-1 behaves as an aggregation-prone molten globule, but folding occurs on binding, and the original (Z) three-helix bundle scaffold is fully formed in the complex. The structural basis for selection and strong binding is a large interaction interface with tight steric and polar/nonpolar complementarity that directly involves 10 of 13 mutated amino acid residues on ZSPA-1. We also note similarities in how the surface of the Z domain responds by induced fit to binding of ZSPA-1 and Ig Fc, respectively, suggesting that the ZSPA-1 affibody is capable of mimicking the morphology of the natural binding partner for the Z domain.


Journal of Molecular Biology | 2010

Design of an Optimized Scaffold for Affibody Molecules

Joachim Feldwisch; Vladimir Tolmachev; Christofer Lendel; Nina Herne; Anna Sjöberg; Barbro Larsson; Daniel Rosik; Eva Lindqvist; Gunilla Fant; Ingmarie Höidén-Guthenberg; Joakim Galli; Per Jonasson; Lars Abrahmsén

Affibody molecules are non-immunoglobulin-derived affinity proteins based on a three-helical bundle protein domain. Here, we describe the design process of an optimized Affibody molecule scaffold with improved properties and a surface distinctly different from that of the parental scaffold. The improvement was achieved by applying an iterative process of amino acid substitutions in the context of the human epidermal growth factor receptor 2 (HER2)-specific Affibody molecule Z(HER2:342). Replacements in the N-terminal region, loop 1, helix 2 and helix 3 were guided by extensive structural modeling using the available structures of the parent Z domain and Affibody molecules. The effect of several single substitutions was analyzed followed by combination of up to 11 different substitutions. The two amino acid substitutions N23T and S33K accounted for the most dramatic improvements, including increased thermal stability with elevated melting temperatures of up to +12 degrees C. The optimized scaffold contains 11 amino acid substitutions in the nonbinding surface and is characterized by improved thermal and chemical stability, as well as increased hydrophilicity, and enables generation of identical Affibody molecules both by chemical peptide synthesis and by recombinant bacterial expression. A HER2-specific Affibody tracer, [MMA-DOTA-Cys61]-Z(HER2:2891)-Cys (ABY-025), was produced by conjugating MMA-DOTA (maleimide-monoamide-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the peptide produced either chemically or in Escherichia coli. ABY-025 showed high affinity and specificity for HER2 (equilibrium dissociation constant, K(D), of 76 pM) and detected HER2 in tissue sections of SKOV-3 xenograft and human breast tumors. The HER2-binding capacity was fully retained after three cycles of heating to 90 degrees C followed by cooling to room temperature. Furthermore, the binding surfaces of five Affibody molecules targeting other proteins (tumor necrosis factor alpha, insulin, Taq polymerase, epidermal growth factor receptor or platelet-derived growth factor receptor beta) were grafted onto the optimized scaffold, resulting in molecules with improved thermal stability and a more hydrophilic nonbinding surface.


Biochemistry | 2009

On the Mechanism of Nonspecific Inhibitors of Protein Aggregation: Dissecting the Interactions of α-Synuclein with Congo Red and Lacmoid

Christofer Lendel; Carlos W. Bertoncini; Nunilo Cremades; Christopher A. Waudby; Michele Vendruscolo; Christopher M. Dobson; Dale Schenk; John Christodoulou; Gergely Tóth

Increasing evidence links the misfolding and aberrant self-assembly of proteins with the molecular events that underlie a range of neurodegenerative diseases, yet the mechanistical details of these processes are still poorly understood. The fact that many of these proteins are intrinsically unstructured makes it particularly challenging to develop strategies for discovering small molecule inhibitors of their aggregation. We present here a broad biophysical approach that enables us to characterize the mechanisms of interaction between alpha-synuclein, a protein whose aggregation is closely connected with Parkinsons disease, and two small molecules, Congo red and Lacmoid, which inhibit its fibrillization. Both compounds are found to interact with the N-terminal and central regions of the monomeric protein although with different binding mechanisms and affinities. The differences can be attributed to the chemical nature of the compounds as well as their abilities to self-associate. We further show that alpha-synuclein binding and aggregation inhibition are mediated by small oligomeric species of the compounds that interact with distinct regions of the monomeric protein. These findings provide potential explanations of the nonspecific antiamyloid effect observed for these compounds as well as important mechanistical information for future drug discovery efforts targeting the misfolding and aggregation of intrinsically unstructured proteins.


Angewandte Chemie | 2014

A Hexameric Peptide Barrel as Building Block of Amyloid‐β Protofibrils

Christofer Lendel; Morten Bjerring; Anatoly Dubnovitsky; Robert T. Kelly; Andrei Filippov; Oleg N. Antzutkin; Niels Chr. Nielsen; Torleif Härd

Oligomeric and protofibrillar aggregates formed by the amyloid-β peptide (Aβ) are believed to be involved in the pathology of Alzheimers disease. Central to Alzheimer pathology is also the fact that the longer Aβ42 peptide is more prone to aggregation than the more prevalent Aβ40 . Detailed structural studies of Aβ oligomers and protofibrils have been impeded by aggregate heterogeneity and instability. We previously engineered a variant of Aβ that forms stable protofibrils and here we use solid-state NMR spectroscopy and molecular modeling to derive a structural model of these. NMR data are consistent with packing of residues 16 to 42 of Aβ protomers into hexameric barrel-like oligomers within the protofibril. The core of the oligomers consists of all residues of the central and C-terminal hydrophobic regions of Aβ, and hairpin loops extend from the core. The model accounts for why Aβ42 forms oligomers and protofibrils more easily than Aβ40 .


Biochemistry | 2010

Detergent-like Interaction of Congo Red with the Amyloid β Peptide

Christofer Lendel; Benedetta Bolognesi; Anna Wahlström; Christopher M. Dobson; Astrid Gräslund

Accumulating evidence links prefibrillar oligomeric species of the amyloid beta peptide (Abeta) to cellular toxicity in Alzheimers disease, potentially via disruption of biological membranes. Congo red (CR) affects protein aggregation. It is known to self-associate into micelle-like assemblies but still reduces the toxicity of Abeta aggregates in cell cultures and model organisms. We show here that CR interacts with Abeta(1-40) in a manner similar to that of anionic detergents. Although CR promotes beta sheet formation and peptide aggregation, it may also solubilize toxic protein species, making them less harmful to critical cellular components and thereby reducing amyloid toxicity.


Journal of the American Chemical Society | 2008

Structure and Dynamics of a Partially Folded Protein Are Decoupled from Its Mechanism of Aggregation

Giulia Calloni; Christofer Lendel; Silvia Campioni; Silva Giannini; Alessandra Gliozzi; Annalisa Relini; Michele Vendruscolo; Christopher M. Dobson; Xavier Salvatella; Fabrizio Chiti

A common strategy to study the mechanism of amyloid formation is the characterization of the structure and dynamics of the precursor state, which is in most cases a partially folded protein. Here we investigated the highly dynamic conformational state formed by the protein domain HypF-N at low pH, before aggregation, using fluorescence, circular dichroism, and NMR spectroscopies. The NMR analysis allowed us, in particular, to identify the regions of the sequence that form hydrophobic interactions and adopt an alpha-helical secondary structure in the pH-denatured ensemble. To understand the role that this residual structure plays in the aggregation of this protein, we probed the mechanism of aggregation using protein engineering experiments and thus identified the regions of the sequence of HypF-N that play a critical role in the conversion of this dynamic state into thioflavin T-binding and beta-sheet containing protofibrils. The combination of these two complementary approaches revealed that the aggregation of pH-denatured HypF-N is not structure-dependent, meaning that it is not driven by the regions of the protein that are either less or more protected in the initial partially folded state. It is, by contrast, promoted by discrete protein regions that have the highest intrinsic propensity to aggregate because of their physicochemical properties.


Biochemistry | 2012

Hydrophobicity and Conformational Change as Mechanistic Determinants for Nonspecific Modulators of Amyloid β Self-Assembly

Axel Abelein; Benedetta Bolognesi; Christopher M. Dobson; Astrid Gräslund; Christofer Lendel

The link between many neurodegenerative disorders, including Alzheimers and Parkinsons diseases, and the aberrant folding and aggregation of proteins has prompted a comprehensive search for small organic molecules that have the potential to inhibit such processes. Although many compounds have been reported to affect the formation of amyloid fibrils and/or other types of protein aggregates, the mechanisms by which they act are not well understood. A large number of compounds appear to act in a nonspecific way affecting several different amyloidogenic proteins. We describe here a detailed study of the mechanism of action of one representative compound, lacmoid, in the context of the inhibition of the aggregation of the amyloid β-peptide (Aβ) associated with Alzheimers disease. We show that lacmoid binds Aβ(1-40) in a surfactant-like manner and counteracts the formation of all types of Aβ(1-40) and Aβ(1-42) aggregates. On the basis of these and previous findings, we are able to rationalize the molecular mechanisms of action of nonspecific modulators of protein self-assembly in terms of hydrophobic attraction and the conformational preferences of the polypeptide.


PLOS ONE | 2013

Amyloid-β protofibrils: size, morphology and synaptotoxicity of an engineered mimic.

Anatoly Dubnovitsky; Anders Sandberg; M. Mahafuzur Rahman; Iryna Benilova; Christofer Lendel; Torleif Härd

Structural and biochemical studies of the aggregation of the amyloid-β peptide (Aβ) are important to understand the mechanisms of Alzheimers disease, but research is complicated by aggregate inhomogeneity and instability. We previously engineered a hairpin form of Aβ called Aβcc, which forms stable protofibrils that do not convert into amyloid fibrils. Here we provide a detailed characterization of Aβ42 cc protofibrils. Like wild type Aβ they appear as smooth rod-like particles with a diameter of 3.1 (±0.2) nm and typical lengths in the range 60 to 220 nm when observed by atomic force microscopy. Non-perturbing analytical ultracentrifugation and nanoparticle tracking analyses are consistent with such rod-like protofibrils. Aβ42 cc protofibrils bind the ANS dye indicating that they, like other toxic protein aggregates, expose hydrophobic surface. Assays with the OC/A11 pair of oligomer specific antibodies put Aβ42 cc protofibrils into the same class of species as fibrillar oligomers of wild type Aβ. Aβ42 cc protofibrils may be used to extract binding proteins in biological fluids and apolipoprotein E is readily detected as a binder in human serum. Finally, Aβ42 cc protofibrils act to attenuate spontaneous synaptic activity in mouse hippocampal neurons. The experiments indicate considerable structural and chemical similarities between protofibrils formed by Aβ42 cc and aggregates of wild type Aβ42. We suggest that Aβ42 cc protofibrils may be used in research and applications that require stable preparations of protofibrillar Aβ.

Collaboration


Dive into the Christofer Lendel's collaboration.

Top Co-Authors

Avatar

Torleif Härd

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabet Wahlberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anatoly Dubnovitsky

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakob Dogan

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Mahafuzur Rahman

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Per-Åke Nygren

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge