Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoffer Åberg is active.

Publication


Featured researches published by Christoffer Åberg.


Nature Nanotechnology | 2012

Biomolecular coronas provide the biological identity of nanosized materials

Marco P. Monopoli; Christoffer Åberg; Anna Salvati; Kenneth A. Dawson

The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the environment. Unless they are specifically designed to avoid it, nanoparticles in contact with biological fluids are rapidly covered by a selected group of biomolecules to form a corona that interacts with biological systems. Here we review the basic concept of the nanoparticle corona and its structure and composition, and highlight how the properties of the corona may be linked to its biological impacts. We conclude with a critical assessment of the key problems that need to be resolved in the near future.


ACS Nano | 2012

Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells

Anna Lesniak; Federico Fenaroli; Marco P. Monopoli; Christoffer Åberg; Kenneth A. Dawson; Anna Salvati

Nanoparticles enter cells through active processes, thanks to their capability of interacting with the cellular machinery. The protein layer (corona) that forms on their surface once nanoparticles are in contact with biological fluids, such as the cell serum, mediates the interactions with cells in situ. As a consequence of this, here we show that the same nanomaterial can lead to very different biological outcomes, when exposed to cells in the presence or absence of a preformed corona. In particular, silica nanoparticles exposed to cells in the absence of serum have a stronger adhesion to the cell membrane and higher internalization efficiency, in comparison to what is observed in medium containing serum, when a preformed corona is present on their surface. The different exposure conditions not only affect the uptake levels but also result in differences in the intracellular nanoparticle location and impact on cells. Interestingly, we also show that after only one hour of exposure, a corona of very different nature forms on the nanoparticles exposed to cells in the absence of serum. Evidence suggests that these different outcomes can all be connected to the different adhesion and surface properties in the two conditions.


Nature Nanotechnology | 2012

Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population

Jong Ah Kim; Christoffer Åberg; Anna Salvati; Kenneth A. Dawson

Nanoparticles are considered a primary vehicle for targeted therapies because they can pass biological barriers and enter and distribute within cells by energy-dependent pathways. So far, most studies have shown that nanoparticle properties, such as size and surface, can influence how cells internalize nanoparticles. Here, we show that uptake of nanoparticles by cells is also influenced by their cell cycle phase. Although cells in different phases of the cell cycle were found to internalize nanoparticles at similar rates, after 24 h the concentration of nanoparticles in the cells could be ranked according to the different phases: G2/M > S > G0/G1. Nanoparticles that are internalized by cells are not exported from cells but are split between daughter cells when the parent cell divides. Our results suggest that future studies on nanoparticle uptake should consider the cell cycle, because, in a cell population, the dose of internalized nanoparticles in each cell varies as the cell advances through the cell cycle.


Journal of the American Chemical Society | 2013

Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency

Anna Lesniak; Anna Salvati; Maria Jose Santos-Martinez; Marek W. Radomski; Kenneth A. Dawson; Christoffer Åberg

The interactions between nanosized particles and living systems are commonly mediated by what adsorbs to the nanoparticle in the biological environment, its biomolecular corona, rather than the pristine surface. Here, we characterize the adhesion toward the cell membrane of nanoparticles of different material and size and study how this is modulated by the presence or absence of a corona on the nanoparticle surface. The results are corroborated with adsorption to simple model supported lipid bilayers using a quartz crystal microbalance. We conclude that the adsorption of proteins on the nanoparticle surface strongly reduces nanoparticle adhesion in comparison to what is observed for the bare material. Nanoparticle uptake is described as a two-step process, where the nanoparticles initially adhere to the cell membrane and subsequently are internalized by the cells via energy-dependent pathways. The lowered adhesion in the presence of proteins thereby causes a concomitant decrease in nanoparticle uptake efficiency. The presence of a biomolecular corona may confer specific interactions between the nanoparticle-corona complex and the cell surface including triggering of regulated cell uptake. An important effect of the corona is, however, a reduction in the purely unspecific interactions between the bare material and the cell membrane, which in itself disregarding specific interactions, causes a decrease in cellular uptake. We suggest that future nanoparticle-cell studies include, together with characterization of size, charge, and dispersion stability, an evaluation of the adhesion properties of the material to relevant membranes.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics

Anna Salvati; Christoffer Åberg; Tiago Santos; Juan A. Varela; Paulo Pinto; Iseult Lynch; Kenneth A. Dawson

UNLABELLED Central to understanding how nanoscale objects interact with living matter is the need for reproducible and verifiable data that can be interpreted with confidence. Likely this will be the basis of durable advances in nanomedicine and nanomedical safety. To develop these fields, there is also considerable interest in advancing the first generation of theoretical models of nanoparticle (NP) uptake into cells, and NP biodistribution in general. Here we present an uptake study comparing the outcomes for free molecular dye and NPs labeled with the same dye. A simple flux-based approach is presented to model NP uptake. We find that the intracellular NP concentration grows linearly in time, and that the uptake is essentially irreversible, with the particles accumulating in lysosomes. A wide range of practical challenges, from labile dye release to NP aggregation and the need to account for cell division, are addressed to ensure that these studies yield meaningful kinetic information. FROM THE CLINICAL EDITOR The authors present an uptake study comparing the outcomes for free molecular dye and NPs labeled with the same dye. A wide range of practical challenges are addressed including labile dye release, NP aggregation and the need to account for cell division with the goal that these studies yield meaningful kinetic information.


Nanoscale | 2013

Nanoparticle accumulation and transcytosis in brain endothelial cell layers

Dong Ye; Michelle Nic Raghnaill; Mattia Bramini; Eugene Mahon; Christoffer Åberg; Anna Salvati; Kenneth A. Dawson

The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight junctions, which limit paracellular permeability. Several reports suggest that nanoparticles have a unique capacity to cross the BBB. However, direct evidence of nanoparticle transcytosis is difficult to obtain, and we found that typical transport studies present several limitations when applied to nanoparticles. In order to investigate the capacity of nanoparticles to access and transport across the BBB, several different nanomaterials, including silica, titania and albumin- or transferrin-conjugated gold nanoparticles of different sizes, were exposed to a human in vitro BBB model of endothelial hCMEC/D3 cells. Extensive transmission electron microscopy imaging was applied in order to describe nanoparticle endocytosis and typical intracellular localisation, as well as to look for evidence of eventual transcytosis. Our results show that all of the nanoparticles were internalised, to different extents, by the BBB model and accumulated along the endo-lysosomal pathway. Rare events suggestive of nanoparticle transcytosis were also observed for several of the tested materials.


Journal of Nanobiotechnology | 2012

Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells

Juan A. Varela; Mariana G. Bexiga; Christoffer Åberg; Jeremy C. Simpson; Kenneth A. Dawson

BackgroundNanoparticles (NPs) are currently used in a wide variety of fields such as technology, medicine and industry. Due to the novelty of these applications and to ensure their success, a precise characterization of the interactions between NPs and cells is essential.FindingsThe current study explores the uptake of polystyrene NPs by 1321N1 human astrocytoma and A549 human lung carcinoma cell lines. In this work we show for the first time a comparison of the uptake rates of fluorescently labeled carboxylated polystyrene (PS) NPs of different sizes (20, 40 and 100 nm) in two different cell types, keeping the number of NPs per unit volume constant for all sizes. We propose a reliable methodology to control the dose of fluorescently labeled NPs, by counting individual NPs using automated particle detection from 3D confocal microscopy images. The possibility of detecting individual NPs also allowed us to calculate the size of each nanoparticle and compare the fluorescence of single NPs across different sizes, thereby providing a robust platform for normalization of NP internalization experiments as measured by flow cytometry.ConclusionsOur findings show that 40 nm NPs are internalized faster than 20 nm or 100 nm particles in both cell lines studied, suggesting that there is a privileged size gap in which the internalization of NPs is higher.


ACS Nano | 2013

Low dose of amino-modified nanoparticles induces cell cycle arrest

Jong Ah Kim; Christoffer Åberg; Guillermo de Cárcer; Marcos Malumbres; Anna Salvati; Kenneth A. Dawson

The interaction of nanoscaled materials with biological systems is currently the focus of a fast-growing area of investigation. Though many nanoparticles interact with cells without acute toxic responses, amino-modified polystyrene nanoparticles are known to induce cell death. We have found that by lowering their dose, cell death remains low for several days while, interestingly, cell cycle progression is arrested. In this scenario, nanoparticle uptake, which we have recently shown to be affected by cell cycle progression, develops differently over time due to the absence of cell division. This suggests that the same nanoparticles can trigger different pathways depending on exposure conditions and the dose accumulated.


ACS Nano | 2014

Imaging Approach to Mechanistic Study of Nanoparticle Interactions with the Blood–Brain Barrier

Mattia Bramini; Dong Ye; Anna Hallerbach; Michelle Nic Raghnaill; Anna Salvati; Christoffer Åberg; Kenneth A. Dawson

Understanding nanoparticle interactions with the central nervous system, in particular the blood-brain barrier, is key to advances in therapeutics, as well as assessing the safety of nanoparticles. Challenges in achieving insights have been significant, even for relatively simple models. Here we use a combination of live cell imaging and computational analysis to directly study nanoparticle translocation across a human in vitro blood-brain barrier model. This approach allows us to identify and avoid problems in more conventional inferential in vitro measurements by identifying the catalogue of events of barrier internalization and translocation as they occur. Potentially this approach opens up the window of applicability of in vitro models, thereby enabling in depth mechanistic studies in the future. Model nanoparticles are used to illustrate the method. For those, we find that translocation, though rare, appears to take place. On the other hand, barrier uptake is efficient, and since barrier export is small, there is significant accumulation within the barrier.


EPL | 2013

Theoretical framework for nanoparticle uptake and accumulation kinetics in dividing cell populations

Christoffer Åberg; Jong Ah Kim; Anna Salvati; Kenneth A. Dawson

Nano-sized objects interact with biological systems in fundamentally novel ways, thereby holding great promise for targeted drug delivery. It has also been suggested they could constitute a hitherto unseen hazard. Numerous experimental studies in the field are taking place. We consider that the nature of the interactions allows a more fundamental theoretical framework to be developed. In particular, we describe the intimate link that develops between nanoparticle uptake and cell population evolution. Explicit analytical results are given and the theory compared to experimental observations.

Collaboration


Dive into the Christoffer Åberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Salvati

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan A. Varela

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Jong Ah Kim

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Mattia Bramini

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iseult Lynch

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Dong Ye

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Paulo Pinto

University College Dublin

View shared research outputs
Researchain Logo
Decentralizing Knowledge