Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoffer Boman is active.

Publication


Featured researches published by Christoffer Boman.


Particle and Fibre Toxicology | 2009

Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties

Anette Kocbach Bølling; Joakim Pagels; Karl Espen Yttri; Lars Barregard; Gerd Sallsten; Per E. Schwarze; Christoffer Boman

BackgroundResidential wood combustion is now recognized as a major particle source in many developed countries, and the number of studies investigating the negative health effects associated with wood smoke exposure is currently increasing. The combustion appliances in use today provide highly variable combustion conditions resulting in large variations in the physicochemical characteristics of the emitted particles. These differences in physicochemical properties are likely to influence the biological effects induced by the wood smoke particles.OutlineThe focus of this review is to discuss the present knowledge on physicochemical properties of wood smoke particles from different combustion conditions in relation to wood smoke-induced health effects. In addition, the human wood smoke exposure in developed countries is explored in order to identify the particle characteristics that are relevant for experimental studies of wood smoke-induced health effects. Finally, recent experimental studies regarding wood smoke exposure are discussed with respect to the applied combustion conditions and particle properties.ConclusionOverall, the reviewed literature regarding the physicochemical properties of wood smoke particles provides a relatively clear picture of how these properties vary with the combustion conditions, whereas particle emissions from specific classes of combustion appliances are less well characterised. The major gaps in knowledge concern; (i) characterisation of the atmospheric transformations of wood smoke particles, (ii) characterisation of the physicochemical properties of wood smoke particles in ambient and indoor environments, and (iii) identification of the physicochemical properties that influence the biological effects of wood smoke particles.


European Respiratory Journal | 2006

Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans.

Annelie F. Behndig; Ian Mudway; Joanna L Brown; Nikolai Stenfors; Ragnberth Helleday; Sean T Duggan; Susan J. Wilson; Christoffer Boman; Flemming R. Cassee; Anthony J. Frew; Frank J. Kelly; Thomas Sandström; Anders Blomberg

Pulmonary cells exposed to diesel exhaust (DE) particles in vitro respond in a hierarchical fashion with protective antioxidant responses predominating at low doses and inflammation and injury only occurring at higher concentrations. In the present study, the authors examined whether similar responses occurred in vivo, specifically whether antioxidants were upregulated following a low-dose DE challenge and investigated how these responses related to the development of airway inflammation at different levels of the respiratory tract where particle dose varies markedly. A total of 15 volunteers were exposed to DE (100 µg·m−3 airborne particulate matter with a diameter of <10 µm for 2 h) and air in a double-blinded, randomised fashion. At 18 h post-exposure, bronchoscopy was performed with lavage and mucosal biopsies taken to assess airway redox and inflammatory status. Following DE exposure, the current authors observed an increase in bronchial mucosa neutrophil and mast cell numbers, as well as increased neutrophil numbers, interleukin-8 and myeloperoxidase concentrations in bronchial lavage. No inflammatory responses were seen in the alveolar compartment, but both reduced glutathione and urate concentrations were increased following diesel exposure. In conclusion, the lung inflammatory response to diesel exhaust is compartmentalised, related to differing antioxidant responses in the conducting airway and alveolar regions.


Circulation | 2011

Particle Traps Prevent Adverse Vascular and Prothrombotic Effects of Diesel Engine Exhaust Inhalation in Men

Andrew J. Lucking; Magnus Lundbäck; Stefan Barath; Nicholas L. Mills; Manjit K. Sidhu; Jeremy P. Langrish; Nicholas A. Boon; Jamshid Pourazar; Juan J. Badimon; Miriam E. Gerlofs-Nijland; Flemming R. Cassee; Christoffer Boman; Ken Donaldson; Thomas Sandström; David E. Newby; Anders Blomberg

Background— In controlled human exposure studies, diesel engine exhaust inhalation impairs vascular function and enhances thrombus formation. The aim of the present study was to establish whether an exhaust particle trap could prevent these adverse cardiovascular effects in men. Methods and Results— Nineteen healthy volunteers (mean age, 25±3 years) were exposed to filtered air and diesel exhaust in the presence or absence of a particle trap for 1 hour in a randomized, double-blind, 3-way crossover trial. Bilateral forearm blood flow and plasma fibrinolytic factors were assessed with venous occlusion plethysmography and blood sampling during intra-arterial infusion of acetylcholine, bradykinin, sodium nitroprusside, and verapamil. Ex vivo thrombus formation was determined with the use of the Badimon chamber. Compared with filtered air, diesel exhaust inhalation was associated with reduced vasodilatation and increased ex vivo thrombus formation under both low- and high-shear conditions. The particle trap markedly reduced diesel exhaust particulate number (from 150 000 to 300 000/cm3 to 30 to 300/cm3; P<0.001) and mass (320±10 to 7.2±2.0 &mgr;g/m3; P<0.001), and was associated with increased vasodilatation, reduced thrombus formation, and an increase in tissue-type plasminogen activator release. Conclusions— Exhaust particle traps are a highly efficient method of reducing particle emissions from diesel engines. With a range of surrogate measures, the use of a particle trap prevents several adverse cardiovascular effects of exhaust inhalation in men. Given these beneficial effects on biomarkers of cardiovascular health, the widespread use of particle traps on diesel-powered vehicles may have substantial public health benefits and reduce the burden of cardiovascular disease. Clinical Trial Registration— http://www.clinicaltrials.gov. Unique identifier: NCT00745446.


Inhalation Toxicology | 2008

Deposition of biomass combustion aerosol particles in the human respiratory tract.

Jakob Löndahl; Joakim Pagels; Christoffer Boman; Erik Swietlicki; Andreas Massling; Jenny Rissler; Anders Blomberg; Mats Bohgard; Thomas Sandström

Smoke from biomass combustion has been identified as a major environmental risk factor associated with adverse health effects globally. Deposition of the smoke particles in the lungs is a crucial factor for toxicological effects, but has not previously been studied experimentally. We investigated the size-dependent respiratory-tract deposition of aerosol particles from wood combustion in humans. Two combustion conditions were studied in a wood pellet burner: efficient (“complete”) combustion and low-temperature (incomplete) combustion simulating “wood smoke.” The size-dependent deposition fraction of 15-to 680-nm particles was measured for 10 healthy subjects with a novel setup. Both aerosols were extensively characterized with regard to chemical and physical particle properties. The deposition was additionally estimated with the ICRP model, modified for the determined aerosol properties, in order to validate the experiments and allow a generalization of the results. The measured total deposited fraction of particles from both efficient combustion and low-temperature combustion was 0.21–0.24 by number, surface, and mass. The deposition behavior can be explained by the size distributions of the particles and by their ability to grow by water uptake in the lungs, where the relative humidity is close to saturation. The experiments were in basic agreement with the model calculations. Our findings illustrate: (1) that particles from biomass combustion obtain a size in the respiratory tract at which the deposition probability is close to its minimum, (2) that particle water absorption has substantial impact on deposition, and (3) that deposition is markedly influenced by individual factors.


Particle and Fibre Toxicology | 2010

Antioxidant airway responses following experimental exposure to wood smoke in man

Maria Sehlstedt; Rosamund Dove; Christoffer Boman; Joakim Pagels; Erik Swietlicki; Jakob Löndahl; Roger Westerholm; Jenny Bosson; Stefan Barath; Annelie F. Behndig; Jamshid Pourazar; Thomas Sandström; Ian Mudway; Anders Blomberg

BackgroundBiomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 ± 22 μg/m3, and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages.ResultsGlutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected.ConclusionsExposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure.


Environmental Science & Technology | 2014

Particulate PAH Emissions from Residential Biomass Combustion: Time-Resolved Analysis with Aerosol Mass Spectrometry

Axel Eriksson; Erik Nordin; Robin Nyström; Esbjörn Pettersson; Erik Swietlicki; Christoffer Bergvall; Roger Westerholm; Christoffer Boman; Joakim Pagels

Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions.


European Respiratory Journal | 2015

Health impacts of anthropogenic biomass burning in the developed world

Torben Sigsgaard; Bertil Forsberg; Isabella Annesi-Maesano; Anders Blomberg; Anette Kocbach Bølling; Christoffer Boman; Jakob Hjort Bønløkke; Michael Brauer; Nigel Bruce; Marie Eve Héroux; Maija-Riitta Hirvonen; Frank J. Kelly; Nino Künzli; Bo Lundbäck; Hanns Moshammer; Curtis W. Noonan; Joachim Pagels; Gerd Sallsten; Jean-Paul Sculier; Bert Brunekreef

Climate change policies have stimulated a shift towards renewable energy sources such as biomass. The economic crisis of 2008 has also increased the practice of household biomass burning as it is often cheaper than using oil, gas or electricity for heating. As a result, household biomass combustion is becoming an important source of air pollutants in the European Union. This position paper discusses the contribution of biomass combustion to pollution levels in Europe, and the emerging evidence on the adverse health effects of biomass combustion products. Epidemiological studies in the developed world have documented associations between indoor and outdoor exposure to biomass combustion products and a range of adverse health effects. A conservative estimate of the current contribution of biomass smoke to premature mortality in Europe amounts to at least 40 000 deaths per year. We conclude that emissions from current biomass combustion products negatively affect respiratory and, possibly, cardiovascular health in Europe. Biomass combustion emissions, in contrast to emissions from most other sources of air pollution, are increasing. More needs to be done to further document the health effects of biomass combustion in Europe, and to reduce emissions of harmful biomass combustion products to protect public health. Biomass combustion is an important source of air pollution and ill health in the EU: emissions need to reduce http://ow.ly/RYkPk


Biomass & Bioenergy | 2003

Effects of increased biomass pellet combustion on ambient air quality in residential areas—a parametric dispersion modeling study

Christoffer Boman; Anders Nordin; L. Thaning

Swedens goals of contemporaneously reducing CO2 emissions and phasing out nuclear power will require a maximum utilization of biomass fuels. This would imply a significant shift from electricity and fuel oil to biomass generated heat, but must also be accomplished without a deterioration of the local air quality. The most suitable energy carrier seems to be pelletized biomass fuels with their associated low emissions and considerable residential conversion potential. Using an underlying statistical design, a parametric dispersion modeling study was performed to estimate and illustrate the combined effects of source-specific, meteorological and modeling variables on the ambient air quality in a typical residential area for different conversion scenarios. The work nicely illustrated the benefits of combining statistical designs with model calculations. It further showed that the concentration of combustion related ambient THC was strongly related to conditions affecting the source strength, but only weakly to the dispersion conditions and model variables. Time of year (summer or winter); specific emission performance; extent of conversion from electricity; conversion from wood log combustion; and specific efficiency of the pellet appliances showed significant effects in descending order. The effects of local settings and model variables were relatively small, making the results more generally applicable. To accomplish the desired conversion to renewable energy in an ecologically and sustainable way, the emissions would have to be reduced to a maximum advisable limit of (given as CH4). Further, the results showed the potential positive influence by conversion from wood log to low emission pellet combustion.


European Respiratory Journal | 2006

Shedding new light on wood smoke: a risk factor for respiratory health

Christoffer Boman; Bertil Forsberg; Thomas Sandström

The burning of wood is probably our oldest source for heating and cooking, and has been used by man for tens of thousands of years. Combustion of biomass, such as wood, animal dung and crop residues, is still used for cooking and heating by a large proportion of the global population, especially in less developed countries. In the industrialised world, and in countries with a cold winter climate, wood and other biomasses are widely used for heat production in residential wood log boilers, stoves and fireplaces. With the recognition of the limitations in amounts and durability of petroleum-based products, as well as an increasing concern regarding the issue of global warming, the interest in wood and other biomasses as alternative, sustainable and CO2-neutral energy sources for fuel production and heating has emerged. In the present issue of the European Respiratory Journal , Orozco-Levi et al . 1 studied wood-smoke exposure and the risk of chronic obstructive pulmonary disease (COPD) in Spain. This contradicts the common assumption that “natural and biological materials” are generally friendly and harmless, as they have been in use since ancient times. Concerning the emissions from domestic wood and charcoal combustion, there is clearly a background of a large number of organic and inorganic components that may be associated with adverse biological events. The potential health effects of by-products, such as volatile organic …


Inhalation Toxicology | 2010

Airway inflammatory response to diesel exhaust generated at urban cycle running conditions

Maria Sehlstedt; Annelie F. Behndig; Christoffer Boman; Anders Blomberg; Thomas Sandström; Jamshid Pourazar

Context: Diesel exhaust (DE) is an important component in traffic-related air pollution, associated with adverse health effects. DE generated at idling has been demonstrated to induce inflammation in human airways, in terms of inflammatory cell recruitment, enhanced expression of vascular endothelial adhesion molecules, cytokines, mitogen-activated protein kinases, and transcription factors in the bronchial epithelium. Objective: This study aimed to investigate airway inflammatory responses in healthy subjects exposed to DE generated during transient speed and engine load under the urban part of the European Transient Cycle. Methods: Fifteen healthy subjects were exposed to DE at an average particulate matter concentration of 270 µg/m3 and filtered air for 1 h. Bronchoscopy with endobronchial mucosal biopsy sampling and airway lavage was performed 6 h postexposure. Results: Compared with filtered air, DE exposure caused an increased expression of the vascular endothelial adhesion molecules p-selectin and vascular cell adhesion molecule-1 (P  =  0.036 and P  =  0.030, respectively) in bronchial mucosal biopsies, together with increased numbers of bronchoalveolar lavage eosinophils (P  =  0.017). Conclusions: DE generated under urban running conditions increased bronchial adhesion molecule expressions, together with the novel finding of bronchoalveolar eosinophilia, which has not been shown after exposure to DE at idling. Variations in airway inflammatory response to DE generated under diverse running condition may be related to differences in exhaust composition.

Collaboration


Dive into the Christoffer Boman's collaboration.

Top Co-Authors

Avatar

Marcus Öhman

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge