Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Beck is active.

Publication


Featured researches published by Christoph Beck.


Meteorologische Zeitschrift | 2006

World Map of the Köppen-Geiger climate classification updated

Markus Kottek; Jürgen Grieser; Christoph Beck; B. Rudolf; Franz Rubel

The most frequently used climate classification map is that o f Wladimir Koppen, presented in its latest version 1961 by Rudolf Geiger. A huge number of climate studies and subsequent publications adopted this or a former release of the Koppen-Geiger map. While the climate classification concept has been widely applied to a broad range of topics in climate and climate change research as well as in physical geography, hydrology, agriculture, biology and educational aspects, a well-documented update of the world climate classification map is still missing. Based on recent data sets from the Climatic Research Unit (CRU) of the University of East Anglia and the Global Precipitation Climatology Centre (GPCC) at the German Weather Service, we present here a new digital Koppen-Geiger world map on climate classification, valid for the second half of the 20 th century. Zusammenfassung Die am haufigsten verwendete Klimaklassifikationskarte ist jene von Wladimir Koppen, die in der letzten Auflage von Rudolf Geiger aus dem Jahr 1961 vorliegt. Seither bildeten viele Klimabucher und Fachartikel diese oder eine fruhere Ausgabe der Koppen-Geiger Karte ab. Obwohl das Schema der Klimaklassifikation in vielen Forschungsgebieten wie Klima und Klimaanderung aber auch physikalische Geographie, Hydrologie, Landwirtschaftsforschung, Biologie und Ausbildung zum Einsatz kommt, fehlt bis heute eine gut dokumentierte Aktualisierung der Koppen-Geiger Klimakarte. Basierend auf neuesten Datensatzen des Climatic Research Unit (CRU) der Universitat von East Anglia und des Weltzentrums fur Niederschlagsklimatologie (WZN) am Deutschen Wetterdienst prasentieren wir hier eine neue digitale Koppen-Geiger Weltkarte fur die zweite Halfte des 20. Jahrhunderts.


Annals of the New York Academy of Sciences | 2008

Classifications of Atmospheric Circulation Patterns

Radan Huth; Christoph Beck; Andreas Philipp; Matthias Demuzere; Zbigniew Ustrnul; Monika Cahynova; Jan Kyselý; Ole Einar Tveito

We review recent advances in classifications of circulation patterns as a specific research area within synoptic climatology. The review starts with a general description of goals of classification and the historical development in the field. We put circulation classifications into a broader context within climatology and systematize the varied methodologies and approaches. We characterize three basic groups of classifications: subjective (also called manual), mixed (hybrid), and objective (computer‐assisted, automated). The roles of cluster analysis and principal component analysis in the classification process are clarified. Several recent methodological developments in circulation classifications are identified and briefly described: the introduction of nonlinear methods, objectivization of subjective catalogs, efforts to optimize classifications, the need for intercomparisons of classifications, and the progress toward an optimum, if possible unified, classification method. Among the recent tendencies in the applications of circulation classifications, we mention a more extensive use in climate studies, both of past, present, and future climates, innovative applications in the ensemble forecasting, increasing variety of synoptic–climatological investigations, and steps above from the troposphere. After introducing the international activity within the field of circulation classifications, the COST733 Action, we briefly describe outputs of the inventory of classifications in Europe, which was carried out within the Action. Approaches to the evaluation of classifications and their mutual comparisons are also reviewed. A considerable part of the review is devoted to three examples of applications of circulation classifications: in historical climatology, in analyses of recent climate variations, and in analyses of outputs from global climate models.


International Journal of Climatology | 1999

Monthly mean pressure reconstructions for Europe for the 1780–1995 period

P. D. Jones; T. D. Davies; David Lister; V. Slonosky; Trausti Jónsson; Lars Bärring; Peter Jönsson; P. Maheras; Fotini Kolyva-Machera; Mariano Barriendos; Javier Martin-Vide; Roberto Rodriguez; Maria João Alcoforado; Heinz Wanner; Christian Pfister; Juerg Luterbacher; R. Rickli; Evi Schuepbach; E. Kaas; T. Schmith; Jucundus Jacobeit; Christoph Beck

Monthly grid-point pressure data are reconstructed from station records of pressure for Europe since 1780. The region encompasses 35-70°N to 30°W-40°E. The reconstructions are based on a principal components regression technique, which relates surface pressure patterns to those of the station pressure data. The relationships are derived over a calibration period (1936-1995) and the results tested with independent data (the verification period, 1881-1935). The reconstructions are of excellent quality, although this is slightly lower for regions with poor station coverage in the early years, particularly during the summer months. The reconstructions are compared with other monthly mean pressure maps produced by Lamb and Johnson (1966) for the years 1780-1872 and by Kington (1980, 1988) for 1781-1785. Both of these map series show systematic biases relative to the present reconstructions.


International Journal of Climatology | 2000

Monthly mean pressure reconstruction for the Late Maunder Minimum Period (AD 1675–1715)

Juerg Luterbacher; R. Rickli; C. Tinguely; E. Xoplaki; E. Schüpbach; Daniel Dietrich; J. Hüsler; M. Ambühl; Christian Pfister; P. Beeli; U. Dietrich; A. Dannecker; T. D. Davies; P. D. Jones; V. Slonosky; Astrid E. J. Ogilvie; P. Maheras; Fotini Kolyva-Machera; Javier Martin-Vide; Mariano Barriendos; Maria João Alcoforado; Maria de Fátima Nunes; Trausti Jónsson; Ruediger Glaser; Jucundus Jacobeit; Christoph Beck; Andreas Philipp; U. Beyer; E. Kaas; T. Schmith

The Late Maunder Minimum (LMM; 1675-1715) delineates a period with marked climate variability within the Little Ice Age in Europe. Gridded monthly mean surface pressure fields were reconstructed for this period for the eastern North Atlantic-European region (25°W-30°E and 35-70°N). These were based on continuous information drawn from proxy and instrumental data taken from several European data sites. The data include indexed temperature and rainfall values, sea ice conditions from northern Iceland and the Western Baltic. In addition, limited instrumental data, such as air temperature from central England (CET) and Paris, reduced mean sea level pressure (SLP) at Paris, and monthly mean wind direction in the Oresund (Denmark) are used. The reconstructions are based on a canonical correlation analysis (CCA), with the standardized station data as predictors and the SLP pressure fields as predictand. The CCA-based model was performed using data from the twentieth century. The period 1901-1960 was used to calibrate the statistical model, and the remaining 30 years (1961-1990) for the validation of the reconstructed monthly pressure fields. Assuming stationarity of the statistical relationships, the calibrated CCA model was then used to predict the monthly LMM SLP fields. The verification results illustrated that the regression equations developed for the majority of grid points contain good predictive skill. Nevertheless, there are seasonal and geographical limitations for which valid spatial SLP patterns can be reconstructed. Backward elimination techniques indicated that Paris station air pressure and temperature, CET, and the wind direction in the Oresund are the most important predictors, together sharing more than 65% of the total variance. The reconstructions are compared with additional data and subjectively reconstructed monthly pressure charts for the years 1675-1704. It is shown that there are differences between the two approaches. However, for extreme years the reconstructions are in good agreement.


Detecting and Modelling Regional Climate Change, 2001, ISBN 9783540422396, págs. 321-332 | 2001

Variability of North-Atlantic-European Circulation Patterns Since 1780 and Corresponding Variations in Central European Climate

Christoph Beck; Jucundus Jacobeit; Andreas Philipp

Time series of Central European temperature and precipitation show marked decadal scale variations during the period 1780 to 1995. On the basis of monthly mean SLP grids reconstructed back to 1780 by Jones et al. (1999) basic North-Atlantic European circulation patterns have been derived by means of T-mode principal component analyses. Decadal scale variability of the large scale atmospheric circulation since 1780 is described in terms of indices representing variations in both relative importance and internal characteristics (within-type changes) of the T-mode circulation patterns. The results show that variations of temperature and precipitation in Central Europe may only partly be attributed to changes in relative importance of North-Atlantic-European circulation patterns. Large parts of the observed climatic variability are due to within-type variability of the circulation patterns.


Bulletin of the American Meteorological Society | 2017

The SCALEX Campaign: Scale-Crossing Land Surface and Boundary Layer Processes in the TERENO-preAlpine Observatory

Bart Wolf; Christian Chwala; Benjamin Fersch; Jakob Garvelmann; W. Junkermann; Matthias Zeeman; Andreas Angerer; Bianca Adler; Christoph Beck; Caroline Brosy; Peter Brugger; Stefan Emeis; Michael Dannenmann; Frederik De Roo; Eugenio Díaz-Pinés; Edwin Haas; Martin Hagen; Irena Hajnsek; Jucundus Jacobeit; Thomas Jagdhuber; N. Kalthoff; Ralf Kiese; Harald Kunstmann; Oliver Kosak; Ronald Krieg; Carsten Malchow; Matthias Mauder; Ralf Merz; Claudia Notarnicola; Andreas Philipp

AbstractScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and...


Archive | 2001

Circulation Changes in Europe since the 1780s

Jucundus Jacobeit; P. D. Jones; T. D. Davies; Christoph Beck

Climatic variability and changes are inherently linked with variability and changes in the atmospheric circulation, the latter comprising causes as well as effects of the former (Hupfer, 1991). Therefore, climate research should always include investigations on the behaviour of the circulation. This is valid within an historical perspective. In view of possible changes in climate that might be expected in the near future due to anthropogenic greenhouse gas forcing, it is of crucial importance to learn about natural variabilities in climate and atmospheric circulation through the extension of empirical research into the historical past.


Theoretical and Applied Climatology | 2015

Interannual drought index variations in Central Europe related to the large-scale atmospheric circulation—application and evaluation of statistical downscaling approaches based on circulation type classifications

Christoph Beck; Andreas Philipp; Jucundus Jacobeit

This contribution investigates the relationship between the large-scale atmospheric circulation and interannual variations of the standardized precipitation index (SPI) in Central Europe. To this end, circulation types (CT) have been derived from a variety of circulation type classifications (CTC) applied to daily sea level pressure (SLP) data and mean circulation indices of vorticity (V), zonality (Z) and meridionality (M) have been calculated. Occurrence frequencies of CTs and circulation indices have been utilized as predictors within multiple regression models (MRM) for the estimation of gridded 3-month SPI values over Central Europe, for the period 1950 to 2010. CTC-based MRMs used in the analyses comprise variants concerning the basic method for CT classification, the number of CTs, the size and location of the spatial domain used for CTCs and the exclusive use of CT frequencies or the combined use of CT frequencies and mean circulation indices as predictors. Adequate MRM predictor combinations have been identified by applying stepwise multiple regression analyses within a resampling framework. The performance (robustness) of the resulting MRMs has been quantified based on a leave-one-out cross-validation procedure applying several skill scores. Furthermore, the relative importance of individual predictors has been estimated for each MRM. From these analyses, it can be stated that model skill is improved by (i) the consideration of vorticity characteristics within CTCs, (ii) a relatively small size of the spatial domain to which CTCs are applied and (iii) the inclusion of mean circulation indices. However, model skill exhibits distinct variations between seasons and regions. Whereas promising skill can be stated for the western and northwestern parts of the Central European domain, only unsatisfactory skill is reached in the more continental regions and particularly during summer. Thus, it can be concluded that the presented approaches feature the potential for the downscaling of Central European drought index variations from the large-scale circulation, at least for some regions. Further improvements of CTC-based approaches may be expected from the optimization of CTCs for explaining the SPI, e.g. via the inclusion of additional variables in the classification procedure.


Atmospheric Pollution Research | 2014

Downscaling of monthly PM10 indices at different sites in Bavaria (Germany) based on circulation type classifications

Christoph Beck; Claudia Weitnauer; Jucundus Jacobeit

Atmospheric circulation affects local concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) in different ways: Via the determination of local meteorological conditions favoring or suppressing the formation and the accumulation of PM10, and through its control on short- and long-range transport of particles and precursors. The quantitative assessment of the connections between the large-scale atmospheric circulation and local PM10 is relevant not only for the understanding of observed variations in PM10 concentrations. It is even more important for estimating the potential effects of projected future changes in large-scale atmospheric circulation on PM10. In this contribution, daily atmospheric circulation types (CTs), resulting from variants of three different classification methods, and their monthly occurrence frequencies have been utilized in three different downscaling approaches for estimating monthly indices of PM10 for the period 1980-2010 at 16 locations in Bavaria (Germany). All variants of approaches have been evaluated via a leave-one-out cross validation procedure in order to attain reliable performance ratings to detect the most suitable downscaling approaches. Results indicate that the highest performance of downscaling approaches is achieved in winter when the best performing models explain on average roughly 50% of the observed PM10 variance. From this it can be concluded that classification-based approaches are generally suitable for the downscaling of PM10, particularly during winter when PM10 concentrations in Bavaria reach maximum values. As preferable settings of the downscaling approaches, the usage of rather small spatial domains and a relatively high number of classes for circulation type classification and furthermore the utilization of multiple linear regression analyses or random forest analyses for relating CTs to PM10 have been ascertained. These findings provide the basis for further enhancements of the classification-based downscaling of monthly PM10 that will be realized in successive investigations.


Scientific Reports | 2016

Sensitivity of proxies on non-linear interactions in the climate system.

Johannes Schultz; Christoph Beck; Gunter Menz; Burkhard Neuwirth; Christian Ohlwein; Andreas Philipp

Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics.

Collaboration


Dive into the Christoph Beck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Radan Huth

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Pere Esteban

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Cyrys

University of Augsburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge