Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jucundus Jacobeit is active.

Publication


Featured researches published by Jucundus Jacobeit.


Journal of Climate | 2007

Long-term variability of daily north atlantic-european pressure patterns since 1850 classified by simulated annealing clustering

Andreas Philipp; Paul-M. Della-Marta; Jucundus Jacobeit; David R. Fereday; P. D. Jones; Anders Moberg; Heiz Wanner

Abstract Reconstructed daily mean sea level pressure patterns of the North Atlantic–European region are classified for the period 1850 to 2003 to explore long-term changes of the atmospheric circulation and its impact on long-term temperature variability in the central European region. Commonly used k-means clustering algorithms resulted in classifications of low quality because of methodological deficiencies leading to local optima by chance for complex datasets. In contrast, a newly implemented clustering scheme combining the concepts of simulated annealing and diversified randomization (SANDRA) is able to reduce substantially the influence of chance in the cluster assignment, leading to partitions that are noticeably nearer to the global optimum and more stable. The differences between conventional cluster analysis and the SANDRA scheme are significant for subsequent analyses of single clusters—in particular, for trend analysis. Conventional indices used to determine the appropriate number of clusters ...


Developments in Earth and Environmental Sciences | 2006

Chapter 1 Mediterranean climate variability over the last centuries: A review

Jürg Luterbacher; Elena Xoplaki; Carlo Casty; Heinz Wanner; Andreas Pauling; Marcel Küttel; This Rutishauser; Stefan Brönnimann; Erich M. Fischer; Dominik Fleitmann; Fidel González-Rouco; Ricardo García-Herrera; Mariano Barriendos; Fernando Rodrigo; Jose Carlos Gonzalez-Hidalgo; Miguel Angel Saz; Luis Gimeno; Pedro Ribera; Manolo Brunet; Heiko Paeth; Norel Rimbu; Thomas Felis; Jucundus Jacobeit; Armin Dünkeloh; Eduardo Zorita; Joël Guiot; Murat Türkeş; Maria João Alcoforado; Ricardo M. Trigo; Dennis A Wheeler

Publisher Summary This chapter discusses a necessary task for assessing to which degree the industrial period is unusual against the background of pre-industrial climate variability. It is the reconstruction and interpretation of temporal and spatial patterns of climate in earlier centuries. There are distinct differences in the temporal resolution among the various proxies. Some of the proxy records are annually or even higher resolved and hence record year-by-year patterns of climate in past centuries. Several of the temperature reconstructions reveal that the late twentieth century warmth is unprecedented at hemispheric scales and is explained by anthropogenic, greenhouse gas (GHG) forcing. The chapter discusses the availability and potential of long, homogenized instrumental data, documentary, and natural proxies to reconstruct aspects of past climate at local- to regional-scales within the larger Mediterranean area, which includes climate extremes and the incidence of natural disasters. The chapter describes the role of external forcing, including natural and anthropogenic influences, and natural, internal variability in the coupled ocean–atmosphere system at subcontinental scale.


Journal of Climate | 2006

Daily mean sea level pressure reconstructions for the European-North Atlantic region for the period 1850-2003

T. J. Ansell; P. D. Jones; Rob Allan; David Lister; D. E. Parker; Manola Brunet; Anders Moberg; Jucundus Jacobeit; Philip Brohan; Nick Rayner; Enric Aguilar; Hans Alexandersson; Mariano Barriendos; Theo Brandsma; Nicholas J. Cox; Paul M. Della-Marta; Achim Drebs; D. Founda; Friedrich-Wilhelm Gerstengarbe; K. Hickey; Trausti Jónsson; Jürg Luterbacher; Øyvind Nordli; H. Oesterle; M. Petrakis; Andreas Philipp; Mark J. Rodwell; Óscar Saladié; Javier Sigró; Victoria C. Slonosky

Abstract The development of a daily historical European–North Atlantic mean sea level pressure dataset (EMSLP) for 1850–2003 on a 5° latitude by longitude grid is described. This product was produced using 86 continental and island stations distributed over the region 25°–70°N, 70°W–50°E blended with marine data from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS). The EMSLP fields for 1850–80 are based purely on the land station data and ship observations. From 1881, the blended land and marine fields are combined with already available daily Northern Hemisphere fields. Complete coverage is obtained by employing reduced space optimal interpolation. Squared correlations (r 2) indicate that EMSLP generally captures 80%–90% of daily variability represented in an existing historical mean sea level pressure product and over 90% in modern 40-yr European Centre for Medium-Range Weather Forecasts Re-Analyses (ERA-40) over most of the region. A lack of sufficient observations over Greenland and...


International Journal of Climatology | 1999

Monthly mean pressure reconstructions for Europe for the 1780–1995 period

P. D. Jones; T. D. Davies; David Lister; V. Slonosky; Trausti Jónsson; Lars Bärring; Peter Jönsson; P. Maheras; Fotini Kolyva-Machera; Mariano Barriendos; Javier Martin-Vide; Roberto Rodriguez; Maria João Alcoforado; Heinz Wanner; Christian Pfister; Juerg Luterbacher; R. Rickli; Evi Schuepbach; E. Kaas; T. Schmith; Jucundus Jacobeit; Christoph Beck

Monthly grid-point pressure data are reconstructed from station records of pressure for Europe since 1780. The region encompasses 35-70°N to 30°W-40°E. The reconstructions are based on a principal components regression technique, which relates surface pressure patterns to those of the station pressure data. The relationships are derived over a calibration period (1936-1995) and the results tested with independent data (the verification period, 1881-1935). The reconstructions are of excellent quality, although this is slightly lower for regions with poor station coverage in the early years, particularly during the summer months. The reconstructions are compared with other monthly mean pressure maps produced by Lamb and Johnson (1966) for the years 1780-1872 and by Kington (1980, 1988) for 1781-1785. Both of these map series show systematic biases relative to the present reconstructions.


International Journal of Climatology | 2000

Monthly mean pressure reconstruction for the Late Maunder Minimum Period (AD 1675–1715)

Juerg Luterbacher; R. Rickli; C. Tinguely; E. Xoplaki; E. Schüpbach; Daniel Dietrich; J. Hüsler; M. Ambühl; Christian Pfister; P. Beeli; U. Dietrich; A. Dannecker; T. D. Davies; P. D. Jones; V. Slonosky; Astrid E. J. Ogilvie; P. Maheras; Fotini Kolyva-Machera; Javier Martin-Vide; Mariano Barriendos; Maria João Alcoforado; Maria de Fátima Nunes; Trausti Jónsson; Ruediger Glaser; Jucundus Jacobeit; Christoph Beck; Andreas Philipp; U. Beyer; E. Kaas; T. Schmith

The Late Maunder Minimum (LMM; 1675-1715) delineates a period with marked climate variability within the Little Ice Age in Europe. Gridded monthly mean surface pressure fields were reconstructed for this period for the eastern North Atlantic-European region (25°W-30°E and 35-70°N). These were based on continuous information drawn from proxy and instrumental data taken from several European data sites. The data include indexed temperature and rainfall values, sea ice conditions from northern Iceland and the Western Baltic. In addition, limited instrumental data, such as air temperature from central England (CET) and Paris, reduced mean sea level pressure (SLP) at Paris, and monthly mean wind direction in the Oresund (Denmark) are used. The reconstructions are based on a canonical correlation analysis (CCA), with the standardized station data as predictors and the SLP pressure fields as predictand. The CCA-based model was performed using data from the twentieth century. The period 1901-1960 was used to calibrate the statistical model, and the remaining 30 years (1961-1990) for the validation of the reconstructed monthly pressure fields. Assuming stationarity of the statistical relationships, the calibrated CCA model was then used to predict the monthly LMM SLP fields. The verification results illustrated that the regression equations developed for the majority of grid points contain good predictive skill. Nevertheless, there are seasonal and geographical limitations for which valid spatial SLP patterns can be reconstructed. Backward elimination techniques indicated that Paris station air pressure and temperature, CET, and the wind direction in the Oresund are the most important predictors, together sharing more than 65% of the total variance. The reconstructions are compared with additional data and subjectively reconstructed monthly pressure charts for the years 1675-1704. It is shown that there are differences between the two approaches. However, for extreme years the reconstructions are in good agreement.


The Climate of the Mediterranean Region | 2012

Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds and their extremes

Uwe Ulbrich; Piero Lionello; Danijel Belušić; Jucundus Jacobeit; Peter Knippertz; Franz G. Kuglitsch; Gregor C. Leckebusch; Jürg Luterbacher; Maurizio Maugeri; P. Maheras; Katrin M. Nissen; V. Pavan; Joaquim G. Pinto; Hadas Saaroni; S. Seubert; Andrea Toreti; Elena Xoplaki; Baruch Ziv

This chapter considers a set of issues related to the synoptic climatology of the Mediterranean region (MR). The main Northern Hemisphere teleconnections affecting the MR and their role on temperature, precipitation, and atmospheric cyclones are described. The characteristics of the cyclones in the MR are presented. The role of teleconnections and atmospheric regimes on temperature and precipitation is discussed. The content includes extremes of temperature, precipitation, wind, and storminess (considering also marine aspects such as waves and storm surges).


Meteorologische Zeitschrift | 2009

Central European precipitation and temperature extremes in relation to large-scale atmospheric circulation types

Jucundus Jacobeit; Joachim Rathmann; Aandreas Philipp; P. D. Jones

There is increasing concern that precipitation and temperature extremes may be changing in frequency and character as a result of changing climate, and the latter is mostly linked with particular changes in the atmospheric circulation. Therefore the question arises - a key question in the climate change prospective - as to how precipitation and temperature extremes are related to large-scale atmospheric circulation types? To study such relationships over an extended period of more than one and a half centuries, we include daily precipitation and temperature time series compiled during the EU project EMULATE (European and North Atlantic daily to multidecadal climate variability) back to 1850 as well as daily mean SLP reconstructions from the same project for the same period. The latter data set has been used for classifying daily circulation types for each season using a simulated annealing clustering technique. Comparing each of these circulation types with their percentages among extreme days and among non-extreme days (with respect to precipitation or temperature) clearly reveals that in most cases only a few of the seasonal circulation types are conducive to the occurrence of daily extremes. This is shown for heavy precipitation and positive temperature extremes (beyond the 98th percentile in each case), related to the winter (DJF) and summer (JJA) seasons for a central European region. Different circulation patterns proved to be important in this context. Thus, in contrast to positive temperature extremes during winter being linked preferably to zonal circulation patterns (positive mode of the North Atlantic Oscillation, NAO), heavy winter precipitation in central Europe is distinctly associated with less zonal patterns characterized by an eastward or southeastward shift of the subpolar centre of low pressure implying only weak correlations with the NAO. Furthermore, particular indices reveal that changing frequencies of extremes are not only due to corresponding frequency changes of these conducive circulation types, but also to changes of their association to precipitation or temperature extremes (reflected by changes in the percentage of extremes related to the overall occurrence of the corresponding circulation type). These within-type changes of circulation types often govern the low-frequency variations in the overall incidence of extremes.


Theoretical and Applied Climatology | 2013

Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: statistical assessments for the Mediterranean area

Elke Hertig; S. Seubert; A. Paxian; G. Vogt; Heiko Paeth; Jucundus Jacobeit

Changes of total precipitation, extreme precipitation, and dry periods in the Mediterranean area until the end of the twenty-first century have been assessed by means of statistical downscaling. Generalized linear models using predictors describing the large-scale atmospheric circulation as well as thermodynamic conditions have been applied for the projections under A1B and B1 scenario assumptions. The results mostly point to reductions of total and extreme precipitation over the western and central-northern Mediterranean areas in summer and autumn and to increases in winter. In contrast, over the eastern Mediterranean area widespread precipitation increases are assessed in summer and autumn, whereas reductions dominate in winter. In spring, total and extreme precipitation decreases prevail over the whole Mediterranean area. Total and extreme precipitation decreases mostly come along with increases of the maximum dry period length. Vice versa precipitation increases are commonly accompanied by a shortening of the maximum dry period length.


Climatic Change | 1999

European Surface Pressure Patterns for Months with Outstanding Climatic Anomalies During the Sixteenth Century

Jucundus Jacobeit; Heinz Wanner; Gerhard Koslowski; Martin Gudd

Monthly mean surface pressure patterns in the European area are reconstructed for those winter and summer seasons of the 16th century with outstanding climatic anomalies being either widespread over Europe or remarkably intensive in some European regions. From the available documentary information about weather characteristics and their sequences, it proved possible to infer prevalent processes of lower tropospheric advection of typical air masses and to assess the position and strength of major surface pressure centres on a monthly scale. For comparison with modern pressure patterns, monthly mean sea level pressure (SLP) grids from the 20th century have been selected for seasons with similar climatic anomalies. There are broad coincidences between these pressure patterns of the 16th and the 20th centuries except for cold summer seasons. Finally, results from the 16th century are discussed in terms of circulation dynamics (different phases of the North Atlantic Oscillation (NAO) in winter, decreasing frequency of anticyclonic ridging in summer).


The Climate of the Mediterranean Region | 2012

The Climate of the Mediterranean Region in Future Climate Projections

Serge Planton; Piero Lionello; Artole Vincenzo; Rolland Aznar; Adriana Carrillo; Jeanne Colin; Letizia Congedi; Clotilde Dubois; Alberto Elizalde; Silvio Gualdi; Elke Hertig; Jucundus Jacobeit; Gabriel Jordá; Laurent Li; Annarita Mariotti; Claudio Piani; Paolo Michele Ruti; Emilia Sanchez-Gomez; Gianmaria Sannino; Florence Sevault; Samuel Somot; Michael N. Tsimplis

Future climate change over the Mediterranean area is investigated by means of climate model simulations covering the twenty-first century that take into account different anthropogenic greenhouse-gas-emission scenarios. This chapter first gives some new insights on these projections coming from the use of new methods, including the coupling at the regional scale of the atmospheric component to a Mediterranean Sea component. A synthesis of the expected changes of key aspects of the Mediterranean regional climate, obtained with a wide range of models and downscaling methods, is then presented. This includes an overview of not only expected changes in the mean climate and climate extremes but also possible changes in Mediterranean Sea temperature, salinity, circulation, water and heat budgets, and sea level. The chapter ends with some advanced results on the way to deal with uncertainties in climate projections and some discussion on the confidence that we can attribute to these projections.

Collaboration


Dive into the Jucundus Jacobeit's collaboration.

Top Co-Authors

Avatar

Elke Hertig

University of Augsburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Seubert

University of Augsburg

View shared research outputs
Top Co-Authors

Avatar

P. D. Jones

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heiko Paeth

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Paxian

University of Würzburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge