Christoph Bisig
University of Fribourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Bisig.
Archives of Toxicology | 2016
Sandro Steiner; Christoph Bisig; Alke Petri-Fink; Barbara Rothen-Rutishauser
Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters.
Environmental Research | 2016
Christoph Bisig; Michèle Roth; Loretta Müller; Pierre Comte; Norbert V. Heeb; Andreas Mayer; Jan Czerwinski; Alke Petri-Fink; Barbara Rothen-Rutishauser
Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NOx, and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×102 #/cm3 (E0), 1×105 #/cm3 (E10), 3×103 #/cm3 (E85), and 2.8×106 #/cm3 (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2,3-dioxygenase 1 (IDO-1), transcription factor NFE2-related factor 2 (NFE2L2), and NAD(P)H dehydrogenase [quinone] 1 (NQO1). Finally, no DNA damage was observed with the OxyDNA assay. On the other hand, cell death, oxidative stress, as well as an increase in pro-inflammatory cytokines was observed for cells exposed to diesel exhaust, confirming the results of other studies and the applicability of our exposure system. In conclusion, the tested exhausts from a flex-fuel gasoline vehicle using different ethanol-gasoline blends did not induce adverse cell responses in this acute exposure. So far ethanol-gasoline blends can promptly be used, though further studies, e.g. chronic and in vivo studies, are needed.
Emission Control Science and Technology | 2015
Christoph Bisig; Sandro Steiner; Pierre Comte; Jan Czerwinski; Andreas Mayer; Alke Petri-Fink; Barbara Rothen-Rutishauser
Exhaust aerosol from gasoline passenger cars is a complex mixture of a particulate fraction as well as volatile compounds. In contrary to the observed adverse effects of diesel exhaust particles the gasoline exhaust has, however, received little attention so far. The aim of this study was to perform a comparison of exhaust composition and biological responses from freshly produced non-filtered exhaust as well as from exhaust filtered with a noncoated gasoline particle filter (GPF). A 3D model of the human epithelial airway barrier was exposed to the exhaust directly at the air-liquid interface and different effects such as cytotoxicity, antioxidative response, pro-inflammation, and activation of the aryl hydrocarbon receptor (AhR) were studied. In addition, genotoxicity was assessed using the Ames test. By an online analysis of the exhaust, it has been shown that the GPF efficiently filters the particle count in both the cold and warm phase when the new European driving cycle (NEDC) was applied. The lung cell tests revealed that the use of the GPF increased the antioxidative glutathionine (GSH) response as well as the pro-inflammatory potential, i.e., IL-8, expression, indicating increased cell stimulation by the volatile compounds alone. The removal of the particulate fraction, however, decreased significantly the AhR activation in comparison to unfiltered exhaust, and the exhaust genotoxicity was reduced as tested by the Ames test. In conclusion, GPF exhaust did not completely reduce the adverse effects of gasoline exhaust in the in vitro test and further experiments with a coated GPF are needed in the future.
Toxicology in Vitro | 2017
Michèle Roth; Jakob Usemann; Christoph Bisig; Pierre Comte; Jan Czerwinski; Andreas Mayer; Konstantin Beier; Barbara Rothen-Rutishauser; Philipp Latzin; Loretta Müller
Air pollution exposure, including passenger car emissions, may cause substantial respiratory health effects and cancer death. In western countries, the majority of passenger cars are driven by gasoline fuel. Recently, new motor technologies and ethanol fuels have been introduced to the market, but potential health effects have not been thoroughly investigated. We developed and verified a coculture model composed of bronchial epithelial cells (ECs) and natural killer cells (NKs) mimicking the human airways to compare toxic effects between pure gasoline (E0) and ethanol-gasoline-blend (E85, 85% ethanol, 15% gasoline) exhaust emitted from a flexfuel gasoline car. We drove a steady state cycle, exposed ECs for 6h and added NKs. We assessed exhaust effects in ECs alone and in cocultures by RT-PCR, flow cytometry, and oxidative stress assay. We found no toxic effects after exposure to E0 or E85 compared to air controls. Comparison between E0 and E85 exposure showed a weak association for less oxidative DNA damage after E85 exposure compared to E0. Our results indicate that short-term exposure to gasoline exhaust may have no major toxic effects in ECs and NKs and that ethanol as part of fuel for gasoline cars may be favorable.
Toxicology in Vitro | 2019
Christoph Bisig; Carola Voss; Alke Petri-Fink; Barbara Rothen-Rutishauser
Positive controls are an important feature in experimental studies as they show the responsiveness of the model under investigation. An often applied reagent for a pro-inflammatory stimulus is the endotoxin lipopolysaccharide (LPS), which has been shown to induce a cytokine release by various cell cultures. The effect of LPS in monocultures of 16HBE14o-, a bronchial cell line, and of A549, an alveolar cell line, were compared in submerged and air-liquid interface cultures, as well as in co-cultures of the two epithelial cells with monocyte-derived macrophages and dendritic cells. The protein and mRNA levels of the two most relevant pro-inflammatory mediators, Tumor necrosis factor alpha (TNF) and Interleukin 8 (CXCL8), were measured after 4 h and 24 h exposure. 16HBE14o- cells alone as well as in co-cultures are non-responsive to an LPS stimulus, but an already increased basal expression of both pro-inflammatory mediators after prolonged time in culture was observed. In contrary, A549 in monocultures showed increased CXCL8 production at the gene and protein level after LPS exposure, while TNF-levels were below detection limit. In A549 co-cultured with immune cells both mediators were upregulated. This study shows the importance of a careful evaluation of the culture system used, including the application of positive controls. In addition, the use of co-cultures with immune cells more adequately reflects the inflammatory response upon exposure to toxicants.
Scientific Reports | 2018
Jakob Usemann; Michèle Roth; Christoph Bisig; Pierre Comte; Jan Czerwinski; Andreas Mayer; Philipp Latzin; Loretta Müller
A substantial amount of traffic-related particle emissions is released by gasoline cars, since most diesel cars are now equipped with particle filters that reduce particle emissions. Little is known about adverse health effects of gasoline particles, and particularly, whether a gasoline particle filter (GPF) influences the toxicity of gasoline exhaust emissions. We drove a dynamic test cycle with a gasoline car and studied the effect of a GPF on exhaust composition and airway toxicity. We exposed human bronchial epithelial cells (ECs) for 6 hours, and compared results with and without GPF. Two hours later, primary human natural killer cells (NKs) were added to ECs to form cocultures, while some ECs were grown as monocultures. The following day, cells were analyzed for cytotoxicity, cell surface receptor expression, intracellular markers, oxidative DNA damage, gene expression, and oxidative stress. The particle amount was significantly reduced due to GPF application. While most biological endpoints did not differ, oxidative DNA damage was significantly reduced in EC monocultures exposed to GPF compared to reference exhaust. Our findings indicate that a GPF has beneficial effects on exhaust composition and airway toxicity. Further studies are needed to assess long-term effects, also in other cell types of the lung.
Inhalation Toxicology | 2018
Christoph Bisig; Alke Petri-Fink; Barbara Rothen-Rutishauser
Abstract Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air–liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.
Environmental Pollution | 2018
Christoph Bisig; Pierre Comte; Martin Güdel; Jan Czerwinski; Andreas Mayer; Loretta Müller; Alke Petri-Fink; Barbara Rothen-Rutishauser
Environmental Pollution | 2018
Ines Tomašek; Claire J. Horwell; Christoph Bisig; David E. Damby; Pierre Comte; Jan Czerwinski; Alke Petri-Fink; Martin J. D. Clift; Barbara Drasler; Barbara Rothen-Rutishauser
European Respiratory Journal | 2015
Michèle Roth; Selina Steiner; Christoph Bisig; Pierre Comte; Jan Czerwinski; Barbara Rothen-Rutishauser; Philipp Latzin; Loretta Müller