Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Brenker is active.

Publication


Featured researches published by Christoph Brenker.


Nature | 2011

The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm

Timo Strünker; Normann Goodwin; Christoph Brenker; Nachiket D. Kashikar; Ingo Weyand; Reinhard Seifert; U. Benjamin Kaupp

In the oviduct, cumulus cells that surround the oocyte release progesterone. In human sperm, progesterone stimulates a Ca2+ increase by a non-genomic mechanism. The Ca2+ signal has been proposed to control chemotaxis, hyperactivation and acrosomal exocytosis of sperm. However, the underlying signalling mechanism has remained mysterious. Here we show that progesterone activates the sperm-specific, pH-sensitive CatSper Ca2+ channel. We found that both progesterone and alkaline pH stimulate a rapid Ca2+ influx with almost no latency, incompatible with a signalling pathway involving metabotropic receptors and second messengers. The Ca2+ signals evoked by alkaline pH and progesterone are inhibited by the Cav channel blockers NNC 55-0396 and mibefradil. Patch-clamp recordings from sperm reveal an alkaline-activated current carried by mono- and divalent ions that exhibits all the hallmarks of sperm-specific CatSper Ca2+ channels. Progesterone substantially enhances the CatSper current. The alkaline- and progesterone-activated CatSper current is inhibited by both drugs. Our results resolve a long-standing controversy over the non-genomic progesterone signalling. In human sperm, either the CatSper channel itself or an associated protein serves as the non-genomic progesterone receptor. The identification of CatSper channel blockers will greatly facilitate the study of Ca2+ signalling in sperm and help to define further the physiological role of progesterone and CatSper.


Nature Immunology | 2014

The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation.

Bernardo S. Franklin; Lukas Bossaller; Dominic De Nardo; Jacqueline M Ratter; Andrea Stutz; Gudrun Engels; Christoph Brenker; Mark Nordhoff; Sandra R Mirandola; Ashraf Al-Amoudi; Matthew Mangan; Sebastian Zimmer; Brian G. Monks; Martin Fricke; Reinhold Ernst Schmidt; Terje Espevik; Bernadette Jones; Andrew G. Jarnicki; Philip M. Hansbro; Patricia Busto; Ann Marshak-Rothstein; Simone Hornemann; Adriano Aguzzi; Wolfgang Kastenmüller; Eicke Latz

Microbes or danger signals trigger inflammasome sensors, which induce polymerization of the adaptor ASC and the assembly of ASC specks. ASC specks recruit and activate caspase-1, which induces maturation of the cytokine interleukin 1β (IL-1β) and pyroptotic cell death. Here we found that after pyroptosis, ASC specks accumulated in the extracellular space, where they promoted further maturation of IL-1β. In addition, phagocytosis of ASC specks by macrophages induced lysosomal damage and nucleation of soluble ASC, as well as activation of IL-1β in recipient cells. ASC specks appeared in bodily fluids from inflamed tissues, and autoantibodies to ASC specks developed in patients and mice with autoimmune pathologies. Together these findings reveal extracellular functions of ASC specks and a previously unknown form of cell-to-cell communication.


The EMBO Journal | 2012

The CatSper channel: a polymodal chemosensor in human sperm

Christoph Brenker; Normann Goodwin; Ingo Weyand; Nachiket D. Kashikar; Masahiro Naruse; Miriam Krähling; Astrid Müller; U. Benjamin Kaupp; Timo Strünker

The sperm‐specific CatSper channel controls the intracellular Ca2+ concentration ([Ca2+]i) and, thereby, the swimming behaviour of sperm. In humans, CatSper is directly activated by progesterone and prostaglandins—female factors that stimulate Ca2+ influx. Other factors including neurotransmitters, chemokines, and odorants also affect sperm function by changing [Ca2+]i. Several ligands, notably odorants, have been proposed to control Ca2+ entry and motility via G protein‐coupled receptors (GPCRs) and cAMP‐signalling pathways. Here, we show that odorants directly activate CatSper without involving GPCRs and cAMP. Moreover, membrane‐permeable analogues of cyclic nucleotides that have been frequently used to study cAMP‐mediated Ca2+ signalling also activate CatSper directly via an extracellular site. Thus, CatSper or associated protein(s) harbour promiscuous binding sites that can host various ligands. These results contest current concepts of Ca2+ signalling by GPCR and cAMP in mammalian sperm: ligands thought to activate metabotropic pathways, in fact, act via a common ionotropic mechanism. We propose that the CatSper channel complex serves as a polymodal sensor for multiple chemical cues that assist sperm during their voyage across the female genital tract.


EMBO Reports | 2014

Direct action of endocrine disrupting chemicals on human sperm

Christian Schiffer; Astrid Müller; D. L. Egeberg; Luis Alvarez; Christoph Brenker; Anders Rehfeld; Hanne Frederiksen; B. Wäschle; Ulrich Benjamin Kaupp; Melanie Balbach; Dagmar Wachten; Niels Erik Skakkebæk; Kristian Almstrup; Timo Strünker

Synthetic endocrine disrupting chemicals (EDCs), omnipresent in food, household, and personal care products, have been implicated in adverse trends in human reproduction, including infertility and increasing demand for assisted reproduction. Here, we study the action of 96 ubiquitous EDCs on human sperm. We show that structurally diverse EDCs activate the sperm‐specific CatSper channel and, thereby, evoke an intracellular Ca2+ increase, a motility response, and acrosomal exocytosis. Moreover, EDCs desensitize sperm for physiological CatSper ligands and cooperate in low‐dose mixtures to elevate Ca2+ levels in sperm. We conclude that EDCs interfere with various sperm functions and, thereby, might impair human fertilization.


eLife | 2014

The Ca2+-activated K+ current of human sperm is mediated by Slo3

Christoph Brenker; Yu Zhou; Astrid Müller; Fabio Andres Echeverry; Christian Trötschel; Ansgar Poetsch; Xiao-Ming Xia; Wolfgang Bönigk; Christopher J. Lingle; U. Benjamin Kaupp; Timo Strünker

Sperm are equipped with a unique set of ion channels that orchestrate fertilization. In mouse sperm, the principal K+ current (IKSper) is carried by the Slo3 channel, which sets the membrane potential (Vm) in a strongly pHi-dependent manner. Here, we show that IKSper in human sperm is activated weakly by pHi and more strongly by Ca2+. Correspondingly, Vm is strongly regulated by Ca2+ and less so by pHi. We find that inhibitors of Slo3 suppress human IKSper, and we identify the Slo3 protein in the flagellum of human sperm. Moreover, heterologously expressed human Slo3, but not mouse Slo3, is activated by Ca2+ rather than by alkaline pHi; current–voltage relations of human Slo3 and human IKSper are similar. We conclude that Slo3 represents the principal K+ channel in human sperm that carries the Ca2+-activated IKSper current. We propose that, in human sperm, the progesterone-evoked Ca2+ influx carried by voltage-gated CatSper channels is limited by Ca2+-controlled hyperpolarization via Slo3. DOI: http://dx.doi.org/10.7554/eLife.01438.001


The Journal of Physiology | 2016

Post‐translational cleavage of Hv1 in human sperm tunes pH‐ and voltage‐dependent gating

Thomas K. Berger; David M. Fußhöller; Normann Goodwin; Wolfgang Bönigk; Astrid Müller; Nasim Dokani Khesroshahi; Christoph Brenker; Dagmar Wachten; Eberhard Krause; U. Benjamin Kaupp; Timo Strünker

In human sperm, proton flux across the membrane is controlled by the voltage‐gated proton channel Hv1. We show that sperm harbour both Hv1 and an N‐terminally cleaved isoform termed Hv1Sper. The pH‐control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm.


British Journal of Pharmacology | 2018

A novel cross‐species inhibitor to study the function of CatSper Ca2+ channels in sperm

Andreas Rennhack; Christian Schiffer; Christoph Brenker; Dmitry Fridman; Elis T Nitao; Yi‐Min Cheng; Lara Tamburrino; Melanie Balbach; Gabriel Stölting; Thomas K. Berger; Michelina Kierzek; Luis Alvarez; Dagmar Wachten; Xu‐Hui Zeng; Elisabetta Baldi; Stephen J. Publicover; U. Benjamin Kaupp; Timo Strünker

Sperm from many species share the sperm‐specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins.


The Journal of Physiology | 2017

Post-translational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gating: Hv1Sper in human sperm

Thomas K. Berger; David M. Fußhöller; Normann Goodwin; Wolfgang Bönigk; Astrid Müller; Nasim Dokani Khesroshahi; Christoph Brenker; Dagmar Wachten; Eberhard Krause; U. Benjamin Kaupp; Timo Strünker

In human sperm, proton flux across the membrane is controlled by the voltage‐gated proton channel Hv1. We show that sperm harbour both Hv1 and an N‐terminally cleaved isoform termed Hv1Sper. The pH‐control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm.


The Journal of Physiology | 2017

Post-translational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gatingPost-translational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gating

Thomas K. Berger; David M. Fußhöller; Normann Goodwin; Astrid Müller; Khesroshahi N. Dokani; Christoph Brenker; Dagmar Wachten; Eberhard Krause; Ulrich Benjamin Kaupp; Timo Strünker

In human sperm, proton flux across the membrane is controlled by the voltage‐gated proton channel Hv1. We show that sperm harbour both Hv1 and an N‐terminally cleaved isoform termed Hv1Sper. The pH‐control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm.


Nature Communications | 2015

Sperm navigation along helical paths in 3D chemoattractant landscapes

Jan Jikeli; Luis Alvarez; Benjamin M. Friedrich; Laurence G. Wilson; René Pascal; Remy Colin; Magdalena Pichlo; Andreas Rennhack; Christoph Brenker; U. Benjamin Kaupp

Collaboration


Dive into the Christoph Brenker's collaboration.

Top Co-Authors

Avatar

Timo Strünker

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar

Astrid Müller

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar

U. Benjamin Kaupp

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar

Normann Goodwin

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar

Dagmar Wachten

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar

Ulrich Benjamin Kaupp

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar

Luis Alvarez

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar

Christian Schiffer

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar

David M. Fußhöller

Center of Advanced European Studies and Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge