Normann Goodwin
Center of Advanced European Studies and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Normann Goodwin.
Nature | 2011
Timo Strünker; Normann Goodwin; Christoph Brenker; Nachiket D. Kashikar; Ingo Weyand; Reinhard Seifert; U. Benjamin Kaupp
In the oviduct, cumulus cells that surround the oocyte release progesterone. In human sperm, progesterone stimulates a Ca2+ increase by a non-genomic mechanism. The Ca2+ signal has been proposed to control chemotaxis, hyperactivation and acrosomal exocytosis of sperm. However, the underlying signalling mechanism has remained mysterious. Here we show that progesterone activates the sperm-specific, pH-sensitive CatSper Ca2+ channel. We found that both progesterone and alkaline pH stimulate a rapid Ca2+ influx with almost no latency, incompatible with a signalling pathway involving metabotropic receptors and second messengers. The Ca2+ signals evoked by alkaline pH and progesterone are inhibited by the Cav channel blockers NNC 55-0396 and mibefradil. Patch-clamp recordings from sperm reveal an alkaline-activated current carried by mono- and divalent ions that exhibits all the hallmarks of sperm-specific CatSper Ca2+ channels. Progesterone substantially enhances the CatSper current. The alkaline- and progesterone-activated CatSper current is inhibited by both drugs. Our results resolve a long-standing controversy over the non-genomic progesterone signalling. In human sperm, either the CatSper channel itself or an associated protein serves as the non-genomic progesterone receptor. The identification of CatSper channel blockers will greatly facilitate the study of Ca2+ signalling in sperm and help to define further the physiological role of progesterone and CatSper.
The EMBO Journal | 2012
Christoph Brenker; Normann Goodwin; Ingo Weyand; Nachiket D. Kashikar; Masahiro Naruse; Miriam Krähling; Astrid Müller; U. Benjamin Kaupp; Timo Strünker
The sperm‐specific CatSper channel controls the intracellular Ca2+ concentration ([Ca2+]i) and, thereby, the swimming behaviour of sperm. In humans, CatSper is directly activated by progesterone and prostaglandins—female factors that stimulate Ca2+ influx. Other factors including neurotransmitters, chemokines, and odorants also affect sperm function by changing [Ca2+]i. Several ligands, notably odorants, have been proposed to control Ca2+ entry and motility via G protein‐coupled receptors (GPCRs) and cAMP‐signalling pathways. Here, we show that odorants directly activate CatSper without involving GPCRs and cAMP. Moreover, membrane‐permeable analogues of cyclic nucleotides that have been frequently used to study cAMP‐mediated Ca2+ signalling also activate CatSper directly via an extracellular site. Thus, CatSper or associated protein(s) harbour promiscuous binding sites that can host various ligands. These results contest current concepts of Ca2+ signalling by GPCR and cAMP in mammalian sperm: ligands thought to activate metabotropic pathways, in fact, act via a common ionotropic mechanism. We propose that the CatSper channel complex serves as a polymodal sensor for multiple chemical cues that assist sperm during their voyage across the female genital tract.
Journal of the American Chemical Society | 2009
Funda Kilic; Nachiket D. Kashikar; Reinhard Schmidt; Luis Alvarez; Luru Dai; Ingo Weyand; Burkhard Wiesner; Normann Goodwin; Volker Hagen; U. Benjamin Kaupp
Ketalization of the biomolecule progesterone with (6-bromo-7-hydroxycoumarin-4-yl)ethane-1,2-diol gives the photolabile progesterone derivatives 3 and 4. These compounds display dramatically reduced bioactivity and release progesterone upon irradiation with UV/vis or IR light. In particular, 4 can be used to perform concentration-jump experiments with high temporal and spatial resolution that allows one to study elegantly the mechanisms of rapid nongenomic cellular events evoked by progesterone. The usefulness of 4 was demonstrated by measurement of changes in swimming behavior of single human sperm caused by progesterone-induced Ca(2+) influx in the sperm flagellum.
The EMBO Journal | 2015
Reinhard Seifert; Melanie Flick; Wolfgang Bönigk; Luis Alvarez; Christian Trötschel; Ansgar Poetsch; Astrid Müller; Normann Goodwin; Patric Pelzer; Nachiket D. Kashikar; Elisabeth Kremmer; Jan Jikeli; Bernd Timmermann; Heiner Kuhl; Dmitry Fridman; Florian Windler; U. Benjamin Kaupp; Timo Strünker
Sperm guidance is controlled by chemical and physical cues. In many species, Ca2+ bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca2+ bursts. The underlying Ca2+ channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca2+ channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant‐evoked Ca2+ influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca2+ bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.
Journal of Cell Biology | 2014
Magdalena Pichlo; Stefanie Bungert-Plümke; Ingo Weyand; Reinhard Seifert; Wolfgang Bönigk; Timo Strünker; Nachiket D. Kashikar; Normann Goodwin; Astrid Müller; Heinz G. Körschen; Ursel Collienne; Patric Pelzer; Qui Van; Jörg Enderlein; Clementine Klemm; Eberhard Krause; Christian Trötschel; Ansgar Poetsch; Elisabeth Kremmer; U. Benjamin Kaupp
The sea urchin sperm guanylyl cyclase chemoreceptor achieves ultrasensitive signal detection and precise signal modulation through high receptor density, subnanomolar ligand affinity, and sequential dephosphorylation.
The Journal of Physiology | 2016
Thomas K. Berger; David M. Fußhöller; Normann Goodwin; Wolfgang Bönigk; Astrid Müller; Nasim Dokani Khesroshahi; Christoph Brenker; Dagmar Wachten; Eberhard Krause; U. Benjamin Kaupp; Timo Strünker
In human sperm, proton flux across the membrane is controlled by the voltage‐gated proton channel Hv1. We show that sperm harbour both Hv1 and an N‐terminally cleaved isoform termed Hv1Sper. The pH‐control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm.
The Journal of Physiology | 2017
Thomas K. Berger; David M. Fußhöller; Normann Goodwin; Wolfgang Bönigk; Astrid Müller; Nasim Dokani Khesroshahi; Christoph Brenker; Dagmar Wachten; Eberhard Krause; U. Benjamin Kaupp; Timo Strünker
In human sperm, proton flux across the membrane is controlled by the voltage‐gated proton channel Hv1. We show that sperm harbour both Hv1 and an N‐terminally cleaved isoform termed Hv1Sper. The pH‐control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm.
The Journal of Physiology | 2017
Thomas K. Berger; David M. Fußhöller; Normann Goodwin; Astrid Müller; Khesroshahi N. Dokani; Christoph Brenker; Dagmar Wachten; Eberhard Krause; Ulrich Benjamin Kaupp; Timo Strünker
In human sperm, proton flux across the membrane is controlled by the voltage‐gated proton channel Hv1. We show that sperm harbour both Hv1 and an N‐terminally cleaved isoform termed Hv1Sper. The pH‐control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm.
Biophysical Journal | 2012
Magdalena Sznapka; Timo Strünker; Reinhard Seifert; Normann Goodwin; Nachiket D. Kashikar; U. Benjamin Kaupp
In sea urchin sperm of Arbacia punctulata, a guanylyl cyclase (GC) serves as chemotaxis receptor that enables sperm to respond to a single molecule of the chemoattractant, resact. The efficiency of resact capture is high, because GC covers about 50% of the flagellar surface and binds resact with picomolar affinity. Furthermore, the binding affinity is controlled by the level of occupancy of the receptor. At high occupancy the resact affinity is lowered through negative cooperativity among subunits of the trimeric GC complex. The lifetime of active GC is controlled by its phosphorylation state. At rest GC is phosphorylated at six serine residues. After activation by resact, the GC becomes dephosphorylated with a biphasic time course, whereas dephosphorylation strongly coincides with the decrease of cGMP synthesis. During the initial fast phase the amplitude of GC dephosphorylation increases with the occupancy level. However, the time constant of this phase is independent of receptor occupancy. Moreover, dephosphorylation is superstoichiometric: even if only 5% of the GCs are occupied by resact, approximately 70% become dephosphorylated. We conclude from these results, that the occupied GC inactivates by auto-dephosporylation (fast phase) and additionally can dephosphorylate adjacent non-occupied GCs (slow phase). We could show for the first time that a receptor GC is regulated by auto-dephosphorylation.
Archive | 2015
Allison E. Girasole; Christopher P. Palmer; Samantha L. Corrado; E. Marie Southerland; L Jeffrey; J Embo; Miriam Krähling; Astrid Müller; U. Benjamin Kaupp; Timo Strünker; Christoph Brenker; Normann Goodwin; Ingo Weyand; Nachiket D. Kashikar; Masahiro Naruse