Christoph Friedburg
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Friedburg.
PLOS ONE | 2013
Tobias Eisenberger; Christine Neuhaus; Arif O. Khan; Christian Decker; Markus N. Preising; Christoph Friedburg; Anika Bieg; Martin Gliem; Peter Charbel Issa; Frank G. Holz; Shahid Mahmood Baig; Yorck Hellenbroich; Alberto Galvez; Konrad Platzer; Bernd Wollnik; Nadja Laddach; Saeed Reza Ghaffari; Maryam Rafati; Elke M. Botzenhart; Sigrid Tinschert; Doris Börger; Axel Bohring; Julia Schreml; Stefani Körtge-Jung; Chayim Schell-Apacik; Khadijah Bakur; Jumana Y. Al-Aama; Teresa Neuhann; Peter Herkenrath; Gudrun Nürnberg
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
American Journal of Human Genetics | 2012
Isabelle Audo; Kinga Bujakowska; Elise Orhan; Charlotte M. Poloschek; Sabine Defoort-Dhellemmes; Isabelle Drumare; Susanne Kohl; Tien D. Luu; Odile Lecompte; Eberhart Zrenner; Marie-Elise Lancelot; Aline Antonio; Aurore Germain; Christelle Michiels; Claire Audier; Mélanie Letexier; Jean-Paul Saraiva; Bart P. Leroy; Francis L. Munier; Saddek Mohand-Said; Birgit Lorenz; Christoph Friedburg; Markus N. Preising; Ulrich Kellner; Agnes B. Renner; Veselina Moskova-Doumanova; Wolfgang Berger; Bernd Wissinger; Christian P. Hamel; Daniel F. Schorderet
Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.
Investigative Ophthalmology & Visual Science | 2008
Birgit Lorenz; Eugenia Poliakov; Maria Schambeck; Christoph Friedburg; Markus N. Preising; T. Michael Redmond
PURPOSE Later onset and progression of retinal dystrophy occur with some RPE65 missense mutations. The functional consequences of the novel P25L RPE65 mutation was correlated with its early-childhood phenotype and compared with other pathogenic missense mutations. METHODS In addition to typical clinical tests, fundus autofluorescence (FAF), optical coherence tomography (OCT), and two-color threshold perimetry (2CTP) were measured. RPE65 mutations were screened by SSCP and direct sequencing. Isomerase activity of mutant RPE65 was assayed in 293F cells and quantified by HPLC analysis of retinoids. RESULTS A very mild phenotype was detected in a now 7-year-old boy homozygous for the P25L mutation in RPE65. Although abnormal dark adaptation was noticed early, best corrected visual acuity was 20/20 at age 5 years and 20/30 at age 7 years. Nystagmus was absent. Cone electroretinogram (ERG) was measurable, rod ERG severely reduced, and FAF very low. 2CTP detected mainly cone-mediated responses in scotopic conditions, and light-adapted cone responses were approximately 1.5 log units below normal. High-resolution spectral domain OCT revealed morphologic changes. Isomerase activity in 293F cells transfected with RPE65/P25L was reduced to 7.7% of wild-type RPE65-transfected cells, whereas RPE65/L22P-transfected cells had 13.5%. CONCLUSIONS The mild clinical phenotype observed is consistent with the residual activity of a severely hypomorphic mutant RPE65. Reduction to <10% of wild-type RPE65 activity by homozygous P25L correlates with almost complete rod function loss and cone amplitude reduction. Functional survival of cones is possible in patients with residual RPE65 isomerase activity. This patient should profit most from gene therapy.
Investigative Ophthalmology & Visual Science | 2009
Christina Zeitz; Stephan Labs; Birgit Lorenz; Ursula Forster; Janne Üksti; Hester Y. Kroes; Elfride De Baere; Bart P. Leroy; Frans P.M. Cremers; Mariana Wittmer; Maria M. van Genderen; José-Alain Sahel; Isabelle Audo; Charlotte M. Poloschek; Saddek Mohand-Said; Johannes Fleischhauer; Ulrike Hüffmeier; Veselina Moskova-Doumanova; Alex V. Levin; Christian P. Hamel; Dorothee Leifert; Francis L. Munier; Daniel F. Schorderet; Eberhart Zrenner; Christoph Friedburg; Bernd Wissinger; Susanne Kohl; Wlolfgang Berger
PURPOSE Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disease. Although electroretinographic (ERG) measurements can discriminate clinical subgroups, the identification of the underlying genetic defects has been complicated for CSNB because of genetic heterogeneity, the uncertainty about the mode of inheritance, and time-consuming and costly mutation scanning and direct sequencing approaches. METHODS To overcome these challenges and to generate a time- and cost-efficient mutation screening tool, the authors developed a CSNB genotyping microarray with arrayed primer extension (APEX) technology. To cover as many mutations as possible, a comprehensive literature search was performed, and DNA samples from a cohort of patients with CSNB were first sequenced directly in known CSNB genes. Subsequently, oligonucleotides were designed representing 126 sequence variations in RHO, CABP4, CACNA1F, CACNA2D4, GNAT1, GRM6, NYX, PDE6B, and SAG and spotted on the chip. RESULTS Direct sequencing of genes known to be associated with CSNB in the study cohort revealed 21 mutations (12 novel and 9 previously reported). The resultant microarray containing oligonucleotides, which allow to detect 126 known and novel mutations, was 100% effective in determining the expected sequence changes in all known samples assessed. In addition, investigation of 34 patients with CSNB who were previously not genotyped revealed sequence variants in 18%, of which 15% are thought to be disease-causing mutations. CONCLUSIONS This relatively inexpensive first-pass genetic testing device for patients with a diagnosis of CSNB will improve molecular diagnostics and genetic counseling of patients and their families and gives the opportunity to analyze whether, for example, more progressive disorders such as cone or cone-rod dystrophies underlie the same gene defects.
Biomedical Optics Express | 2012
Matthäus Pilch; Yaroslava Wenner; Elisabeth Strohmayr; Markus N. Preising; Christoph Friedburg; Erdmuthe Meyer zu Bexten; Birgit Lorenz; Knut Stieger
The correct segmentation of blood vessels in optical coherence tomography (OCT) images may be an important requirement for the analysis of intra-retinal layer thickness in human retinal diseases. We developed a shape model based procedure for the automatic segmentation of retinal blood vessels in spectral domain (SD)-OCT scans acquired with the Spectralis OCT system. The segmentation procedure is based on a statistical shape model that has been created through manual segmentation of vessels in a training phase. The actual segmentation procedure is performed after the approximate vessel position has been defined by a shadowgraph that assigns the lateral vessel positions. The active shape model method is subsequently used to segment blood vessel contours in axial direction. The automated segmentation results were validated against the manual segmentation of the same vessels by three expert readers. Manual and automated segmentations of 168 blood vessels from 34 B-scans were analyzed with respect to the deviations in the mean Euclidean distance and surface area. The mean Euclidean distance between the automatically and manually segmented contours (on average 4.0 pixels respectively 20 µm against all three experts) was within the range of the manually marked contours among the three readers (approximately 3.8 pixels respectively 18 µm for all experts). The area deviations between the automated and manual segmentation also lie within the range of the area deviations among the 3 clinical experts. Intra reader variability for the experts was between 0.9 and 0.94. We conclude that the automated segmentation approach is able to segment blood vessels with comparable accuracy as expert readers and will provide a useful tool in vessel analysis of whole C-scans, and in particular in multicenter trials.
Human Mutation | 2011
Bernd Wissinger; Simone Schaich; Britta Baumann; Michael Bonin; Herbert Jägle; Christoph Friedburg; Balázs Varsányi; Carel B. Hoyng; Hélène Dollfus; John R. Heckenlively; Thomas Rosenberg; Günter Rudolph; Ulrich Kellner; Roberto Salati; Astrid S. Plomp; Elfride De Baere; Monika Andrassi-Darida; Alexandra Sauer; Christiane Wolf; Ditta Zobor; Antje Bernd; Bart P. Leroy; Péter Enyedi; Frans P.M. Cremers; Birgit Lorenz; Eberhart Zrenner; Susanne Kohl
Cone dystrophy with supernormal rod response (CDSRR) is considered to be a very rare autosomal recessive retinal disorder. CDSRR is associated with mutations in KCNV2, a gene that encodes a modulatory subunit (Kv8.2) of a voltage‐gated potassium channel. In this study, we found that KCNV2 mutations are present in a substantial fraction (2.2–4.3%) of a sample of 367 independent patients with a variety of initial clinical diagnoses of cone malfunction, indicating that CDSRR is underdiagnosed and more common than previously thought. In total, we identified 20 different KCNV2 mutations; 15 of them are novel. A new finding of this study is the substantial proportion of large deletions at the KCNV2 locus that accounts for 15.5% of the mutant alleles in our sample. We determined the breakpoints and size of all five different deletions, which ranged between 10.9 and 236.8 kb. Two deletions encompass the entire KCNV2 gene and one also includes the adjacent VLDLR gene. Furthermore, we investigated N‐terminal amino acid substitution mutations for its effect on interaction with Kv2.1 using yeast two‐hybrid technology. We found that these mutations dramatically reduce or abolish this interaction suggesting a lack of assembly of heteromeric Kv channels as one underlying pathomechanism of CDSRR. 32:1398–1406, 2011. ©2011 Wiley Periodicals, Inc.
Investigative Ophthalmology & Visual Science | 2012
Birgit Lorenz; Elisabeth Strohmayr; Steffen Zahn; Christoph Friedburg; Martin Kramer; Markus N. Preising; Knut Stieger
PURPOSE The aim of the study was to objectively characterize the function of rods, cones, and intrinsic photosensitive retinal ganglion cells (ipRGCs) in patients with RPE65 mutations by using two published protocols for chromatic pupillometry, and to correlate the data with the clinical phenotype. METHODS The study group comprised 11 patients with RPE65 mutations, and for control purposes, 32 healthy probands and 2 achromats. A custom-made binocular chromatic pupillometer (Bino I) connected to a ColorDome Ganzfeld stimulator was used to assess changes in pupil diameter in response to red (640 nm) and blue (462 nm) light stimuli. Light intensities, stimulus duration, and background varied depending on the protocol used. Results were compared to the clinical phenotype, that is, visual field (Goldmann perimetry), best corrected visual acuity, and full-field stimulus testing (FST). RESULTS No significant differences in any of the pupil response parameters were observed in intraday or intervisit variability tests. Pupil responses to rod-weighted stimulation were significantly diminished in all RPE65 patients. Pupil responses to cone-weighted stimuli differed among RPE65 patients and did not always correlate with residual visual field and cone sensitivity loss in FST. Pupil responses to ipRGC-weighted answers were slightly but significantly diminished, and the postillumination pupil response was significantly increased. CONCLUSIONS Chromatic pupillometry represents a highly sensitive and objective test to quantify the function of rods, cones, and ipRGCs in patients with RPE65 mutations.
Human Molecular Genetics | 2014
Stylianos Michalakis; Lior Shaltiel; Vithiyanjali Sothilingam; Susanne Koch; Verena Schludi; Stefanie Krause; Christina Zeitz; Isabelle Audo; Marie-Elise Lancelot; Christian P. Hamel; Isabelle Meunier; Markus N. Preising; Christoph Friedburg; Birgit Lorenz; Nawal Zabouri; Silke Haverkamp; Marina Garcia Garrido; Naoyuki Tanimoto; Mathias W. Seeliger; Martin Biel; Christian Wahl-Schott
Mutations in CACNA1F encoding the α1-subunit of the retinal Cav1.4 L-type calcium channel have been linked to Cav1.4 channelopathies including incomplete congenital stationary night blindness type 2A (CSNB2), Åland Island eye disease (AIED) and cone-rod dystrophy type 3 (CORDX3). Since CACNA1F is located on the X chromosome, Cav1.4 channelopathies are typically affecting male patients via X-chromosomal recessive inheritance. Occasionally, clinical symptoms have been observed in female carriers, too. It is currently unknown how these mutations lead to symptoms in carriers and how the retinal network in these females is affected. To investigate these clinically important issues, we compared retinal phenotypes in Cav1.4-deficient and Cav1.4 heterozygous mice and in human female carrier patients. Heterozygous Cacna1f carrier mice have a retinal mosaic consistent with differential X-chromosomal inactivation, characterized by adjacent vertical columns of affected and non-affected wild-type-like retinal network. Vertical columns in heterozygous mice are well comparable to either the wild-type retinal network of normal mice or to the retina of homozygous mice. Affected retinal columns display pronounced rod and cone photoreceptor synaptopathy and cone degeneration. These changes lead to vastly impaired vision-guided navigation under dark and normal light conditions and reduced retinal electroretinography (ERG) responses in Cacna1f carrier mice. Similar abnormal ERG responses were found in five human CACNA1F carriers, four of which had novel mutations. In conclusion, our data on Cav1.4 deficient mice and human female carriers of mutations in CACNA1F are consistent with a phenotype of mosaic CSNB2.
Investigative Ophthalmology & Visual Science | 2012
Markus N. Preising; Nora Hausotter-Will; Manuel C. Solbach; Christoph Friedburg; Franz Rüschendorf; Birgit Lorenz
PURPOSE To identify the underlying mutation and describe the phenotype in a consanguineous Kurdish family with Lebers congenital amaurosis (LCA)/early onset severe retinal dystrophy (EOSRD). METHODS Members of the index family were followed up to 22 years by ophthalmological examinations, including best corrected visual acuity (BCVA), Goldmann visual field (GVF), two-color-threshold perimetry (2CTP) and Ganzfeld electroretinogram (ERG), fundus photographs, fundus autofluorescence (FAF), and optical coherence tomography (OCT). After excluding seven of nine known LCA/EOSRD genes in the index patient, linkage analysis was performed in the family using a microarray followed by microsatellite fine mapping and direct sequencing of candidate genes. RD3 was screened by direct sequencing of 85 independent patients with LCA/EOSRD presenting with a BCVA ≥ 1.0 LogMAR before the age of 2 years to assess the prevalence of RD3 mutations in LCA/EOSRD. Since RD3 and RetGC1 have a functional relation, study authors screened for a modifying effect of RD3 mutations in 17 independent patients with mutations in GUCY2D. RESULTS BCVA was severely reduced from the earliest examinations (as early as 3 months), never exceeding 1.3 LogMAR. The disease presented as cone-rod dystrophy with dystrophic changes in the macula and bone spicules in the periphery on progression. Linkage analysis narrowed the region of interest towards the LCA12 locus. Direct sequencing of RD3 revealed a homozygous nonsense mutation (c.180C > A) in all affected members tested. Screening of additional unrelated LCA/EOSRD patients revealed only polymorphisms in RD3. CONCLUSIONS This is the second family reported so far with mutations in RD3. Mutations in RD3 are a very rare cause of LCA associated with an extremely severe form of retinal dystrophy.
Investigative Ophthalmology & Visual Science | 2013
Matthäus Pilch; Knut Stieger; Yaroslava Wenner; Markus N. Preising; Christoph Friedburg; Erdmuthe Meyer zu Bexten; Birgit Lorenz
PURPOSE To develop and evaluate a method for automated segmentation and quantitative analysis of pathological cavities in the retina visualized by spectral-domain optical coherence tomography (SD-OCT) scans. METHODS The algorithm is based on the segmentation of the gray-level intensities within a B-scan by a k-means cluster analysis and subsequent classification by a k-nearest neighbor algorithm. Accuracy was evaluated against three clinical experts using 130 bullous cavities identified on eight SD-OCT B-scans of three patients with wet age-related macular degeneration (AMD) and five patients with X-linked retinoschisis, as well as on one volume scan of a patient with X-linked retinoschisis. The algorithm calculated the surface area of the cavities for the B-scans and the volume of all cavities for the volume scan. In order to validate the applicability of the algorithm in clinical use, we analyzed 31 volume scans taken over the course of 4 years for one AMD patient with a serous retinal detachment. RESULTS Discrepancies in area measurements between the segmentation results of the algorithm and the experts were within the range of the area deviations among the experts. Volumes interpolated from the B-scan series of the volume scan were comparable among experts and algorithm (0.249 mm³ for the algorithm, 0.271 mm³ for expert 1, 0.239 mm³ for expert 2, and 0.262 mm³ for expert 3). Volume changes of the serous retinal detachment were quantifiable. CONCLUSIONS The segmentation algorithm represents a method for the automated analysis of large numbers of volume scans during routine diagnostics and in clinical trials.