Christoph H. Österreicher
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph H. Österreicher.
Nature Medicine | 2007
Ekihiro Seki; Samuele De Minicis; Christoph H. Österreicher; Johannes Kluwe; Yosuke Osawa; David A. Brenner; Robert F. Schwabe
Hepatic injury is associated with a defective intestinal barrier and increased hepatic exposure to bacterial products. Here we report that the intestinal bacterial microflora and a functional Toll-like receptor 4 (TLR4), but not TLR2, are required for hepatic fibrogenesis. Using Tlr4-chimeric mice and in vivo lipopolysaccharide (LPS) challenge, we demonstrate that quiescent hepatic stellate cells (HSCs), the main precursors for myofibroblasts in the liver, are the predominant target through which TLR4 ligands promote fibrogenesis. In quiescent HSCs, TLR4 activation not only upregulates chemokine secretion and induces chemotaxis of Kupffer cells, but also downregulates the transforming growth factor (TGF)-β pseudoreceptor Bambi to sensitize HSCs to TGF-β–induced signals and allow for unrestricted activation by Kupffer cells. LPS-induced Bambi downregulation and sensitization to TGF-β is mediated by a MyD88–NF-κB–dependent pathway. Accordingly, Myd88-deficient mice have decreased hepatic fibrosis. Thus, modulation of TGF-β signaling by a TLR4-MyD88–NF-κB axis provides a novel link between proinflammatory and profibrogenic signals.
Cell | 2010
Eek Joong Park; Jun Hee Lee; Guann Yi Yu; Guobin He; Syed Raza Ali; Ryan G. Holzer; Christoph H. Österreicher; Hiroyuki Takahashi; Michael Karin
Epidemiological studies indicate that overweight and obesity are associated with increased cancer risk. To study how obesity augments cancer risk and development, we focused on hepatocellular carcinoma (HCC), the common form of liver cancer whose occurrence and progression are the most strongly affected by obesity among all cancers. We now demonstrate that either dietary or genetic obesity is a potent bona fide liver tumor promoter in mice. Obesity-promoted HCC development was dependent on enhanced production of the tumor-promoting cytokines IL-6 and TNF, which cause hepatic inflammation and activation of the oncogenic transcription factor STAT3. The chronic inflammatory response caused by obesity and enhanced production of IL-6 and TNF may also increase the risk of other cancers.
Nature | 2012
Sergei I. Grivennikov; Kepeng Wang; Daniel Mucida; C. Andrew Stewart; Bernd Schnabl; Dominik Jauch; Koji Taniguchi; Guann Yi Yu; Christoph H. Österreicher; Kenneth E. Hung; Christian Datz; Ying Feng; Eric R. Fearon; Mohamed Oukka; Lino Tessarollo; Vincenzo Coppola; Felix Yarovinsky; Hilde Cheroutre; Lars Eckmann; Giorgio Trinchieri; Michael Karin
Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of β-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, ‘inflammatory signature’ genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as ‘tumour-elicited inflammation’. Although infiltrating CD4+ TH1 cells and CD8+ cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (TH17) cells promote tumorigenesis, and a ‘TH17 expression signature’ in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.
Gastroenterology | 2012
Fanli Meng; K. Wang; Tomonori Aoyama; Sergei I. Grivennikov; Yong Han Paik; David Scholten; Min Cong; Keiko Iwaisako; Xiao Liu; Mingjun Zhang; Christoph H. Österreicher; Felix Stickel; Klaus Ley; David A. Brenner; Tatiana Kisseleva
BACKGROUND & AIMS Interleukin (IL)-17 signaling has been implicated in lung and skin fibrosis. We examined the role of IL-17 signaling in the pathogenesis of liver fibrosis in mice. METHODS Using cholestatic and hepatotoxic models of liver injury, we compared the development of liver fibrosis in wild-type mice with that of IL-17RA(-/-) mice and of bone marrow chimeric mice devoid of IL-17 signaling in immune and Kupffer cells (IL-17RA(-/-) to wild-type and IL-17A(-/-) to wild-type mice) or liver resident cells (wild-type to IL-17RA(-/-) mice). RESULTS In response to liver injury, levels of Il-17A and its receptor increased. IL-17A increased appeared to promote fibrosis by activating inflammatory and liver resident cells. IL-17 signaling facilitated production of IL-6, IL-1, and tumor necrosis factor-α by inflammatory cells and increased the expression of transforming growth factor-1, a fibrogenic cytokine. IL-17 directly induced production of collagen type I in hepatic stellate cells by activating the signal transducer and activator of transcription 3 (Stat3) signaling pathway. Mice devoid of Stat3 signaling in hepatic stellate cells (GFAPStat3(-/-) mice) were less susceptible to fibrosis. Furthermore, deletion of IL-23 from immune cells attenuated liver fibrosis, whereas deletion of IL-22 exacerbated fibrosis. Administration of IL-22 and IL-17E (IL-25, a negative regulator of IL-23) protected mice from bile duct ligation-induced liver fibrosis. CONCLUSIONS IL-17 induces liver fibrosis through multiple mechanisms in mice. Reagents that block these pathways might be developed as therapeutics for patients with cirrhosis.
Hepatology | 2010
Kojiro Taura; Kouichi Miura; Keiko Iwaisako; Christoph H. Österreicher; Yuzo Kodama; Melitta Penz-Österreicher; David A. Brenner
The origin of fibrogenic cells in liver fibrosis remains controversial. We assessed the emerging concept that hepatocytes contribute to production of extracellular matrix (ECM) in liver fibrosis through epithelial‐mesenchymal transition (EMT). We bred triple transgenic mice expressing ROSA26 stop β‐galactosidase (β‐gal), albumin Cre, and collagen α1(I) green fluorescent protein (GFP), in which hepatocyte‐derived cells are permanently labeled by β‐gal and type I collagen‐expressing cells are labeled by GFP. We induced liver fibrosis by repetitive carbon tetrachloride (CCl4) injections. Liver sections and isolated cells were evaluated for GFP and β‐gal as well as expression of α‐smooth muscle actin (α‐SMA) and fibroblast‐specific protein 1 (FSP‐1). Upon stimulation with transforming growth factor β‐1, cultured hepatocytes isolated from untreated liver expressed both GFP and β‐gal with a fibroblast‐like morphological change but lacked expression of other mesenchymal markers. Cells from CCl4‐treated livers never showed double‐positivity for GFP and β‐gal. All β‐gal‐positive cells exhibited abundant cytoplasm, a typical morphology of hepatocytes, and expressed none of the mesenchymal markers including α‐SMA, FSP‐1, desmin, and vimentin. In liver sections of CCl4‐treated mice, GFP‐positive areas were coincident with fibrotic septa and never overlapped X‐gal‐positive areas. Conclusion: Type I collagen‐producing cells do not originate from hepatocytes. Hepatocytes in vivo neither acquire mesenchymal marker expression nor exhibit a morphological change clearly distinguishable from normal hepatocytes. Our results strongly challenge the concept that hepatocytes in vivo acquire a mesenchymal phenotype through EMT to produce the ECM in liver fibrosis. (HEPATOLOGY 2009.)
Proceedings of the National Academy of Sciences of the United States of America | 2010
Sayaka Inokuchi; Tomonori Aoyama; Kouichi Miura; Christoph H. Österreicher; Yuzo Kodama; Katsumi Miyai; Shizuo Akira; David A. Brenner; Ekihiro Seki
TGF-β–activated kinase 1 (TAK1) is a MAP3K family member that activates NF-κB and JNK via Toll-like receptors and the receptors for IL-1, TNF-α, and TGF-β. Because the TAK1 downstream molecules NF-κB and JNK have opposite effects on cell death and carcinogenesis, the role of TAK1 in the liver is unpredictable. To address this issue, we generated hepatocyte-specific Tak1-deficient (Tak1ΔHEP) mice. The Tak1ΔHEP mice displayed spontaneous hepatocyte death, compensatory proliferation, inflammatory cell infiltration, and perisinusoidal fibrosis at age 1 month. Older Tak1ΔHEP mice developed multiple cancer nodules characterized by increased expression of fetal liver genes including α-fetoprotein. Cultures of primary hepatocytes deficient in Tak1 exhibited spontaneous cell death that was further increased in response to TNF-α. TNF-α increased caspase-3 activity but activated neither NF-κB nor JNK in Tak1-deficient hepatocytes. Genetic abrogation of TNF receptor type I (TNFRI) in Tak1ΔHEP mice reduced liver damage, inflammation, and fibrosis compared with unmodified Tak1ΔHEP mice. In conclusion, hepatocyte-specific deletion of TAK1 in mice resulted in spontaneous hepatocyte death, inflammation, fibrosis, and carcinogenesis that was partially mediated by TNFR signaling, indicating that TAK1 is an essential component for cellular homeostasis in the liver.
Gastroenterology | 2008
Kojiro Taura; Samuele De Minicis; Ekihiro Seki; Etsuro Hatano; Keiko Iwaisako; Christoph H. Österreicher; Yuzo Kodama; Kouichi Miura; Iwao Ikai; Shinji Uemoto; David A. Brenner
BACKGROUND & AIMS Although angiogenesis is closely associated with liver fibrosis, the angiogenic factors involved in liver fibrosis are not well characterized. Angiopoietin 1 is an angiogenic cytokine indispensable for vascular development and remodeling. It functions as an agonist for the receptor tyrosine kinase with immunoglobulin G-like and endothelial growth factor-like domains 2 (Tie2) and counteracts apoptosis, promotes vascular sprouting or branching, and stabilizes vessels. METHODS Liver samples from patients with liver fibrosis were evaluated for mRNA expression of angiogenic cytokines. Liver fibrosis was induced in BALB/c mice by either carbon tetrachloride (CCl(4)) or bile duct ligation (BDL). Hepatic stellate cells (HSCs) were isolated from BALB/c mice. We used an adenovirus expressing the extracellular domain of Tie2 (AdsTie2) to block angiopoietin signaling in mice and evaluated its effect on liver fibrosis. RESULTS mRNA expression level of angiopoietin 1 was increased in human fibrotic livers and correlated with the expression level of CD31, an endothelial cell marker. During experimental models of murine liver fibrosis, angiopoietin 1 was expressed by activated HSCs. In primary cultures, activated HSCs express and secrete angiopoietin 1 more abundantly than quiescent HSCs, and the inflammatory cytokine tumor necrosis factor-alpha stimulates its expression in an nuclear factor-kappaB-dependent manner. AdsTie2 inhibits angiogenesis and liver fibrosis induced by either CCl(4) or BDL. CONCLUSIONS These results reveal an angiogenic role of HSCs mediated by angiopoietin 1, which contributes to development of liver fibrosis. Thus, angiogenesis and hepatic fibrosis are mutually stimulatory, such that fibrosis requires angiogenesis and angiogenesis requires angiopoietin 1 from activated HSCs.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Christoph H. Österreicher; Melitta Penz-Österreicher; Sergei I. Grivennikov; Monica Guma; Ekaterina K. Koltsova; Christian Datz; Roman Sasik; Gary Hardiman; Michael Karin; David A. Brenner
Cirrhosis is the end result of chronic liver disease. Hepatic stellate cells (HSC) are believed to be the major source of collagen-producing myofibroblasts in cirrhotic livers. Portal fibroblasts, bone marrow-derived cells, and epithelial to mesenchymal transition (EMT) might also contribute to the myofibroblast population in damaged livers. Fibroblast-specific protein 1 (FSP1, also called S100A4) is considered a marker of fibroblasts in different organs undergoing tissue remodeling and is used to identify fibroblasts derived from EMT in several organs including the liver. The aim of this study was to characterize FSP1-positive cells in human and experimental liver disease. FSP1-positive cells were increased in human and mouse experimental liver injury including liver cancer. However, FSP1 was not expressed by HSC or type I collagen-producing fibroblasts. Likewise, FSP1-positive cells did not express classical myofibroblast markers, including αSMA and desmin, and were not myofibroblast precursors in injured livers as evaluated by genetic lineage tracing experiments. Surprisingly, FSP1-positive cells expressed F4/80 and other markers of the myeloid-monocytic lineage as evaluated by double immunofluorescence staining, cell fate tracking, flow cytometry, and transcriptional profiling. Similar results were obtained for bone marrow-derived and peritoneal macrophages. FSP1-positive cells were characterized by increased expression of COX2, osteopontin, inflammatory cytokines, and chemokines but reduced expression of MMP3 and TIMP3 compared with Kupffer cells/macrophages. These findings suggest that FSP1 is a marker of a specific subset of inflammatory macrophages in liver injury, fibrosis, and cancer.
Gastroenterology | 2010
David Scholten; Christoph H. Österreicher; Anjali Scholten; Keiko Iwaisako; Guoqiang Gu; David A. Brenner; Tatiana Kisseleva
BACKGROUND & AIMS Chronic injury changes the fate of certain cellular populations, inducing epithelial cells to generate fibroblasts by epithelial-to-mesenchymal transition (EMT) and mesenchymal cells to generate epithelial cells by mesenchymal-to-epithelial transition (MET). Although contribution of EMT/MET to embryogenesis, renal fibrosis, and lung fibrosis is well documented, role of EMT/MET in liver fibrosis is unclear. We determined whether cytokeratin-19 positive (K19(+)) cholangiocytes give rise to myofibroblasts (EMT) and/or whether glial fibrillary acidic protein positive (GFAP(+)) hepatic stellate cells (HSCs) can express epithelial markers (MET) in response to experimental liver injury. METHODS EMT was studied with Cre-loxP system to map cell fate of K19(+) cholangiocytes in K19(YFP) or fibroblast-specific protein-1 (FSP-1)(YFP) mice, generated by crossing tamoxifen-inducible K19(CreERT) mice or FSP-1(Cre) mice with Rosa26(f/f-YFP) mice. MET of GFAP(+) HSCs was studied in GFAP(GFP) mice. Mice were subjected to bile duct ligation or CCl(4)-liver injury, and livers were analyzed for expression of mesodermal and epithelial markers. RESULTS On Cre-loxP recombination, >40% of genetically labeled K19(+) cholangiocytes expressed yellow fluorescent protein (YFP). All mice developed liver fibrosis. However, specific immunostaining of K19(YFP) cholangiocytes showed no expression of EMT markers alpha-smooth muscle actin, desmin, or FSP-1. Moreover, cells genetically labeled by FSP-1(YFP) expression did not coexpress cholangiocyte markers K19 or E-cadherin. Genetically labeled GFAP(GFP) HSCs did not express epithelial or liver progenitor markers in response to liver injury. CONCLUSION EMT of cholangiocytes identified by genetic labeling does not contribute to hepatic fibrosis in mice. Likewise, GFAP(Cre)-labeled HSCs showed no coexpression of epithelial markers, providing no evidence for MET in HSCs in response to fibrogenic liver injury.
Gastroenterology | 2009
Yuzo Kodama; Tatiana Kisseleva; Keiko Iwaisako; Kouichi Miura; Kojiro Taura; Samuele De Minicis; Christoph H. Österreicher; Bernd Schnabl; Ekihiro Seki; David A. Brenner
BACKGROUND & AIMS c-Jun N-terminal kinase (JNK) plays a pivotal role in the development of the metabolic syndrome including nonalcoholic fatty liver disease. However, the mechanism underlying the contribution of JNK to the progression from simple steatosis to steatohepatitis and liver fibrosis is unresolved. METHODS Hepatic steatosis, inflammation, and fibrosis were examined in wild-type, jnk1(-/-), or jnk2(-/-) mice fed a choline-deficient L-amino acid-defined (CDAA) diet for 20 weeks. The functional contribution of JNK isoforms in Kupffer cells was assessed in vitro and in vivo using chimeric mice in which the hematopoietic compartment including Kupffer cells was replaced by wild-type, jnk1(-/-), or jnk2(-/-) cells. RESULTS CDAA diet induced significantly less hepatic inflammation and less liver fibrosis despite a similar level of hepatic steatosis in jnk1(-/-) mice as compared with wild-type or jnk2(-/-) mice. CDAA diet-induced hepatic inflammation was chronic and mediated by Kupffer cells. Pharmacologic inhibition of JNK or gene deletion of jnk1 but not jnk2 repressed the expression of inflammatory and fibrogenic mediators in primary Kupffer cells. In vivo, CDAA diet induced less hepatic inflammation and liver fibrosis despite an equivalent level of hepatic steatosis in chimeric mice with jnk1(-/-) hematopoietic cells as compared with chimeric mice with wild-type or jnk2(-/-) hematopoietic cells. CONCLUSIONS jnk1(-/-) mice are resistant to diet-induced steatohepatitis and liver fibrosis. JNK1 in hematopoietic cells, especially in Kupffer cells, contributes to the development of liver fibrosis by inducing chronic inflammation.