Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Hanske is active.

Publication


Featured researches published by Christoph Hanske.


Nano Letters | 2014

Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal Self-Assembly

Christoph Hanske; Moritz Tebbe; Christian Kuttner; Vera Bieber; Vladimir V. Tsukruk; Munish Chanana; Tobias A. F. König; Andreas Fery

We present ensembles of surface-ordered nanoparticle arrangements, which are formed by template-assisted self-assembly of monodisperse, protein-coated gold nanoparticles in wrinkle templates. Centimeter-squared areas of highly regular, linear assemblies with tunable line width are fabricated and their extinction cross sections can be characterized by conventional UV/vis/NIR spectroscopy. Modeling based on electrodynamic simulations shows a clear signature of strong plasmonic coupling with an interparticle spacing of 1–2 nm. We find evidence for well-defined plasmonic modes of quasi-infinite chains, such as resonance splitting and multiple radiant modes. Beyond elementary simulations on the individual chain level, we introduce an advanced model, which considers the chain length distribution as well as disorder. The step toward macroscopic sample areas not only opens perspectives for a range of applications in sensing, plasmonic light harvesting, surface enhanced spectroscopy, and information technology but also eases the investigation of hybridization and metamaterial effects fundamentally.


Langmuir | 2012

The Role of Substrate Wettability in Nanoparticle Transfer from Wrinkled Elastomers : Fundamentals and Application toward Hierarchical Patterning

Christoph Hanske; Mareen B. Müller; Vera Bieber; Moritz Tebbe; Sarah Jessl; Alexander Wittemann; Andreas Fery

We report on the role of surface wettability during the printing transfer of nanoparticles from wrinkled surfaces onto flat substrates. As we demonstrate, this parameter dominates the transfer process. This effect can further be utilized to transfer colloidal particles in a structured fashion, if the substrates are patterned in wettability. The resulting colloidal arrangements are highly regular over macroscopic surface areas and display distinct pattern features in both the micrometer and nanoscale regime. We study the obtained structures and discuss the potential of this approach for creating hierarchical particle assemblies of high complexity. Our findings not only contribute to a better understanding of technologically relevant colloidal assembly processes, but also open new avenues for the realization of novel materials consisting of nanoparticles. In this regard, the presented structuring method is especially interesting for the design of optically functional surface coatings.


Biomacromolecules | 2012

Utilizing conformational changes for patterning thin films of recombinant spider silk proteins.

Seth L. Young; Maneesh K. Gupta; Christoph Hanske; Andreas Fery; Thomas Scheibel; Vladimir V. Tsukruk

Recombinant spider silk proteins mimicking the properties of dragline silk proteins represent a class of materials that hold great potential for future high-performance applications. Here we explore the self-assembly behavior of a recombinantly produced spider silk protein based on the dragline silk of the Araneus diadematus , eADF4 (C16), by selectively patterning its secondary structure using capillary transfer lithography and solvent-assisted microcontact molding. Two conformational transitions were observed, influenced by initial solvent composition: α-helix/random coil conformation to a more densely packed β-sheet conformation (by casting from 1,1,1,3,3,3-hexafluoro-propanol) and moderate initial β-sheet content to higher β-sheet content (casting from formic acid). Furthermore, by using the solvent-assisted microcontact molding technique, we were able to achieve a submicrometer spatial resolution and reveal fine details of morphological and mechanical changes in patterned regions and at interfaces.


Langmuir | 2014

Coalescence and noncoalescence of sessile drops: impact of surface forces.

Stefan Karpitschka; Christoph Hanske; Andreas Fery; Hans Riegler

Due to capillarity, sessile droplets of identical liquids will instantaneously fuse when they come in contact at their three-phase lines. However, with drops of different, completely miscible liquids, instantaneous coalescence can be suppressed. Instead, the drops remain in a state of noncoalescence for some time, with the two drop bodies connected only by a thin neck. The reason for this noncoalescence is the surface tension difference, Δγ, between the liquids. If Δγ is sufficiently large, then it induces a sufficiently strong Marangoni flow, which keeps the main drop bodies temporarily separated. Studies with spreading drops have revealed that the boundary between instantaneous coalescence and noncoalescence is sharp (Karpitschka, S.; Riegler, H. J. Fluid. Mech. 2014, 743, R1). The boundary is a function of two parameters only: Δγ and Θ(a), the arithmetic mean of the contact angles in the moment of drop-drop contact. It appears plausible that surface forces (the disjoining pressure) could also influence the coalescence behavior. However, in experiments with spreading drops, surface forces always promote coalescence and their influence might be obscured. Therefore, we present here coalescence experiments with partially wetting liquids and compare the results to the spreading case. We adjust different equilibrium contact angles (i.e., different surface forces) with different substrate surface coatings. As for spreading drops, we observe a sharp boundary between regimes of coalescence and noncoalescence. The boundary follows the same power law relation for both partially and completely wetting cases. Therefore, we conclude that surface forces have no significant, explicit influence on the coalescence behavior of sessile drops from different miscible liquids.


Macromolecular Rapid Communications | 2011

Nanoreactor-Assisted Polymerization Toward Stable Dispersions of Conductive Composite Particles

Alexey N. Korovin; Vladimir G. Sergeyev; O. A. Pyshkina; Christoph Hanske; Andreas Fery; Alexander Wittemann; Larisa Tsarkova

We demonstrate the functioning of a macromolecular nanoreactor which guides a reaction in a confined volume and leads toward improved functional properties of a product material. In our approach, the polymerization of aniline (ANi) is conducted within the interfacial volume of spherical polyelectrolyte brushes (SPB) which are densely affixed to colloidal particles. The SPB provide optimal conditions for matrix polymerization by the efficient confinement of ANi monomers within the finite volume of polyelectrolyte brushes and controlled delivery of the oxidizing reagent to the reaction volume. The excellent kinetic stability of the resulting core-shell particles together with the high macroscopic conductivity of the respective composite open up perspectives for novel materials (a conductive ink).


Zeitschrift für Physikalische Chemie | 2012

Adsorption of Spherical Polyelectrolyte Brushes : from Interactions to Surface Patterning

Christoph Hanske; Johann Erath; Christin Kühr; Martin Trebbin; Christian Schneider; Alexander Wittemann; Andreas Fery

Abstract Adsorption of colloidal particles constitutes an attractive route to tailor the properties of surfaces. However, for efficient material design full control over the particle-substrate interactions is required. We investigate the interaction of spherical polyelectrolyte brushes (SPB) with charged substrates based on adsorption studies and atomic force spectroscopy. The brush layer grafted from the colloidal particles allows a precise adjustment of their adsorption behavior by varying the concentration of added salt. We find a pronounced selectivity between oppositely and like-charged surfaces for ionic strengths up to 10 mM. Near the transition from the osmotic to the salted brush regime at approximately 100 mM attractive secondary interactions become dominant. In this regime SPB adsorb even to like-charged surfaces. To determine the adhesion energy of SPB on charged surfaces directly, we synthesize micrometer-sized SPB. These particles are used in colloidal probe AFM studies. Measurements on oppositely charged surfaces show high forces of adhesion for low ionic strengths that can be attributed to an entropy gain by counterion release. Transferring our observations to charge patterned substrates, we are able to direct the deposition of SPB into two-dimensional arrays. Considering that numerous chemical modifications have been reported for SPB, our studies could open exiting avenues for the production of functional materials with a hierarchical internal organization.


Langmuir | 2017

Metal Nanoparticle Growth within Clay–Polymer Nacre-Inspired Materials for Improved Catalysis and Plasmonic Detection in Complex Biofluids

Eric H. Hill; Christoph Hanske; Alexander Johnson; Luis Yate; Hans Jelitto; Gerold A. Schneider; Luis M. Liz-Marzán

Recent studies have shown that layered silicate clays can be used to form a nacre-like bioinspired layered structure with various polymer fillers, leading to composite films with good material strength, gas-barrier properties, and high loading capacity. We go one step further by in situ growing metal nanoparticles in nacre-like layered films based on layered silicate clays, which can be used for applications in plasmonic sensing and catalysis. The degree of anisotropy of the nanoparticles grown in the film can be controlled by adjusting the ratio of clay to polymer or gold to clay and reducing agent concentration, as well as silver overgrowth, which greatly enhances the surface enhanced Raman scattering activity of the composite. We show the performance of the films for SERS detection of bacterial quorum sensing molecules in culture medium, and catalytic properties are demonstrated through the reduction of 4-nitroaniline. These films serve as the first example of seedless, in situ nanoparticle growth within nacre-mimetic materials, and open the path to basic research on the influence of different building blocks and polymeric mortars on nanoparticle morphology and distribution, as well as applications in catalysis, sensing, and antimicrobial surfaces using such materials.


Advanced Materials | 2018

Silica‐Coated Plasmonic Metal Nanoparticles in Action

Christoph Hanske; Marta N. Sanz-Ortiz; Luis M. Liz-Marzán

Hybrid colloids consisting of noble metal cores and metal oxide shells have been under intense investigation for over two decades and have driven progress in diverse research lines including sensing, medicine, catalysis, and photovoltaics. Consequently, plasmonic core-shell particles have come to play a vital role in a plethora of applications. Here, an overview is provided of recent developments in the design and utilization of the most successful class of such hybrid materials, silica-coated plasmonic metal nanoparticles. Besides summarizing common simple approaches to silica shell growth, special emphasis is put on advanced synthesis routes that either overcome typical limitations of classical methods, such as stability issues and undefined silica porosity, or grant access to particularly sophisticated nanostructures. Hereby, a description is given, how different types of silica can be used to provide noble metal particles with specific functionalities. Finally, applications of such nanocomposites in ultrasensitive analyte detection, theranostics, catalysts, and thin-film solar cells are reviewed.


ACS Nano | 2018

Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates

Cristiano Matricardi; Christoph Hanske; Juan Luis Garcia‐Pomar; Judith Langer; Agustín Mihi; Luis M. Liz-Marzán

Metal colloids are of great interest in the field of nanophotonics, mainly due to their morphology-dependent optical properties, but also because they are high-quality building blocks for complex plasmonic architectures. Close-packed colloidal supercrystals not only serve for investigating the rich plasmonic resonances arising in strongly coupled arrangements but also enable tailoring the optical response, on both the nano- and the macroscale. Bridging these vastly different length scales at reasonable fabrication costs has remained fundamentally challenging, but is essential for applications in sensing, photovoltaics or optoelectronics, among other fields. We present here a scalable approach to engineer plasmonic supercrystal arrays, based on the template-assisted assembly of gold nanospheres with topographically patterned polydimethylsiloxane molds. Regular square arrays of hexagonally packed supercrystals were achieved, reaching periodicities down to 400 nm and feature sizes around 200 nm, over areas up to 0.5 cm2. These two-dimensional supercrystals exhibit well-defined collective plasmon modes that can be tuned from the visible through the near-infrared by simple variation of the lattice parameter. We present electromagnetic modeling of the physical origin of the underlying hybrid modes and demonstrate the application of superlattice arrays as surface-enhanced Raman scattering (SERS) spectroscopy substrates which can be tailored for a specific probe laser. We therefore investigated the influence of the lattice parameter, local degree of order, and cluster architecture to identify the optimal configuration for highly efficient SERS of a nonresonant Raman probe with 785 nm excitation.


Langmuir | 2008

A Lithography-Free Pathway for Chemical Microstructuring of Macromolecules from Aqueous Solution Based on Wrinkling

Melanie Pretzl; Alexandra Schweikart; Christoph Hanske; Arnaud Chiche; Ute Zettl; Anne Horn; Alexander Böker; Andreas Fery

Collaboration


Dive into the Christoph Hanske's collaboration.

Top Co-Authors

Avatar

Andreas Fery

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias A. F. König

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hedi Mattoussi

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge