Christoph Höller
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Höller.
Nature | 2017
Ugur Sahin; Evelyna Derhovanessian; Matthias Miller; Björn-Philipp Kloke; Petra Simon; Martin Löwer; Valesca Bukur; Arbel D. Tadmor; Ulrich Luxemburger; Barbara Schrörs; Tana Omokoko; Mathias Vormehr; Christian Albrecht; Anna Paruzynski; Andreas Kuhn; Janina Buck; Sandra Heesch; Katharina Schreeb; Felicitas Müller; Inga Ortseifer; Isabel Vogler; Eva Godehardt; Sebastian Attig; Richard Rae; Andrea Breitkreuz; Claudia Tolliver; Martin Suchan; Goran Martic; Alexander Hohberger; Patrick Sorn
T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of β2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.
Histopathology | 2015
Anna Sophie Berghoff; Gerda Ricken; Georg Widhalm; Orsolya Rajky; Karin Dieckmann; Peter Birner; Rupert Bartsch; Christoph Höller; Matthias Preusser
In this study we aimed to characterize immune infiltrates and expression of programmed death 1 (PD‐1) and programmed death ligand 1 (PD‐L1) in a series of melanoma BM to provide a basis for experimental therapy using immune checkpoint inhibitors.
Frontiers in Immunology | 2017
Carmen Stecher; Claire Battin; Judith Leitner; Markus Zettl; Katharina Grabmeier-Pfistershammer; Christoph Höller; Gerhard J. Zlabinger; Peter Steinberger
Immune checkpoint inhibitors, which target coinhibitory T cell molecules to promote anticancer immune responses, are on the rise to become a new pillar of cancer therapy. However, current immune checkpoint-based therapies are successful only in a subset of patients and acquired resistances pose additional challenges. Finding new targets and combining checkpoint inhibitors might help to overcome these limitations. In this study, human T cells stimulated with allogeneic dendritic cells (DCs) were used to compare immune checkpoint inhibitors targeting TIM-3, BTLA, LAG-3, CTLA-4, and TIGIT alone or in combination with a PD-1 antibody. We found that PD-1 blockade bears a unique potency to enhance T cell proliferation and cytokine production. Other checkpoint inhibitors failed to significantly augment T cell responses when used alone. However, antibodies to TIM-3, BTLA, LAG-3, and CTLA-4 enhanced T cell proliferation in presence of a PD-1 antibody. Upregulation of coinhibitory T cell receptors upon PD-1 blockade was identified as a potential mechanism for synergistic effects between checkpoint inhibitors. Donor-specific variation in response to immune checkpoint inhibitors was attributed to the T cells rather than DCs. Additionally, we analyzed the regulation of checkpoint molecules and their ligands on T cells and allogeneic DCs in coculture, which suggested a PD-1 blockade-dependent crosstalk between T cells and APC. Our results indicate that several immune checkpoint inhibitors have the capacity to enhance T cell responses when combined with PD-1 blockade. Additional in vitro studies on human T cells will be useful to identify antibody combinations with the potential to augment T cell responses in cancer patients.
PLOS ONE | 2014
Irina Mirkina; Emir Hadzijusufovic; Clemens Krepler; Mario Mikula; Diana Mechtcheriakova; Sabine Strommer; Alexander Stella; Erika Jensen-Jarolim; Christoph Höller; Volker Wacheck; Hubert Pehamberger; Peter Valent
Malignant melanoma is a life-threatening skin cancer increasingly diagnosed in the western world. In advanced disease the prognosis is grave. Growth and metastasis formation in melanomas are regulated by a network of cytokines, cytokine-receptors, and adhesion molecules. However, little is known about surface antigens and target expression profiles in human melanomas. We examined the cell surface antigen profile of human skin melanoma cells by multicolor flow cytometry, and compared their phenotype with 4 melanoma cell lines (A375, 607B, Mel-Juso, SK-Mel28). Melanoma cells were defined as CD45−/CD31− cells co-expressing one or more melanoma-related antigens (CD63, CD146, CD166). In most patients, melanoma cells exhibited ErbB3/Her3, CD44/Pgp-1, ICAM-1/CD54 and IGF-1-R/CD221, but did not express CD20, ErbB2/Her2, KIT/CD117, AC133/CD133 or MDR-1/CD243. Melanoma cell lines were found to display a similar phenotype. In most patients, a distinct subpopulation of melanoma cells (4–40%) expressed the erythropoietin receptor (EPO-R) and ErbB4 together with PD-1 and NGF-R/CD271. Both the EPO-R+ and EPO-R− subpopulations produced melanoma lesions in NOD/SCID IL-2Rgammanull (NSG) mice in first and secondary recipients. Normal skin melanocytes did not express ErbB4 or EPO-R, but expressed a functional KIT receptor (CD117) as well as NGF-R, ErbB3/Her3, IGF-1-R and CD44. In conclusion, melanoma cells display a unique composition of surface target antigens and cytokine receptors. Malignant transformation of melanomas is accompanied by loss of KIT and acquisition of EPO-R and ErbB4, both of which are co-expressed with NGF-R and PD-1 in distinct subfractions of melanoma cells. However, expression of EPO-R/ErbB4/PD-1 is not indicative of a selective melanoma-initiating potential.
British Journal of Pharmacology | 2014
Christine Wasinger; Martin Künzl; Christoph Minichsdorfer; Christoph Höller; Maria Zellner; Martin Hohenegger
Despite new therapeutic approaches, metastatic melanomas still have a poor prognosis. Statins reduce low‐density lipoprotein cholesterol and exert anti‐inflammatory and anti‐proliferative actions. We have recently shown that simvastatin triggers an apoptotic burst in human metastatic melanoma cells by the synthesis of an autocrine factor.
Journal of Neuro-oncology | 2018
Julia Furtner; Anna Sophie Berghoff; Veronika Schöpf; Robert Reumann; Benjamin Pascher; Ramona Woitek; Ulrika Asenbaum; Sebastian Pelster; Johannes Leitner; Georg Widhalm; Brigitte Gatterbauer; Karin Dieckmann; Christoph Höller; Daniela Prayer; Matthias Preusser
ObjectivesThe purpose of this study was to evaluate the prognostic relevance of temporal muscle thickness (TMT) in melanoma patients with newly diagnosed brain metastases.MethodsTMT was retrospectively assessed in 146 melanoma patients with newly diagnosed brain metastases on cranial magnetic resonance images. Chart review was used to retrieve clinical parameters, including disease-specific graded prognostic assessment (DS-GPA) and survival times.ResultsPatients with a TMT > median showed a statistically significant increase in survival time (13 months) compared to patients with a TMT < median (5 months; p < 0.001; log rank test). A Cox regression model revealed that the risk of death was increased by 27.9% with every millimeter reduction in TMT. In the multivariate analysis, TMT (HR 0.724; 95% 0.642–0.816; < 0.001) and DS-GPA (HR 1.214; 95% CI 1.023–1.439; p = 0.026) showed a statistically significant correlation with overall survival.ConclusionTMT is an independent predictor of survival in melanoma patients with brain metastases. This parameter may aid in patient selection for clinical trials or to the choice of different treatment options based on the determination of frail patient populations.
Oncotarget | 2017
Selma Ugurel; Carmen Loquai; Patrick Terheyden; Dirk Schadendorf; Erika Richtig; Jochen Utikal; Ralf Gutzmer; Knuth Rass; Cord Sunderkötter; Annette Stein; Michael Fluck; Martin Kaatz; Uwe Trefzer; Katharina C. Kähler; Rudolf Stadler; Carola Berking; Christoph Höller; Laura Kerschke; Lutz Edler; Annette Kopp-Schneider; Jürgen C. Becker
Chemotherapy still plays an important role in metastatic melanoma, particularly for patients who are not suitable or have no access to highly efficacious new therapies. Pre-therapeutic chemosensitivity testing might be useful to identify optimal chemotherapy regimens for individual patients. This multicenter randomized phase-3 trial was aimed to test for superiority of chemosensitivity-directed combination chemotherapy compared to standard dacarbazine monochemotherapy, and to demonstrate the chemosensitivity test result as prognostic in metastatic melanoma. Chemo-naive patients with advanced melanoma were biopsied from metastatic lesions. Tumor cells were isolated and tested ex-vivo for sensitivity to chemotherapeutic agents using an ATP-based viability assay. Patients with evaluable test results were randomly assigned to receive either chemosensitivity-directed combination chemotherapy (paclitaxel+cisplatin, treosulfan+gemcitabine, treosulfan+cytarabine), or dacarbazine. The primary study endpoint was overall survival (OS). After inclusion of 287 patients and a median follow-up of 26 months, the per-protocol population (n=244) showed no difference in OS between chemosensitivity-directed therapy and dacarbazine (median 9.2 vs 9.0 months, HR=1.08, p=0.64). The disease control rate (CR+PR+SD) tended to be higher in patients treated with chemosensitivity-directed therapy (32.8% vs 23.0%, p=0.088); objective response rates (CR+PR) showed no difference between groups (10.7% vs 12.3%, p=0.90). Patients whose tumors were tested chemosensitive showed no better OS or response rate than patients with chemoresistant tumors. Severe toxicities (CTC grade 3-4) were significantly more frequently observed with chemosensitivity-directed combination chemotherapy than with dacarbazine (40.2% vs 12.3%, p<0.0001). These results indicate, that chemosensitivity-directed combination chemotherapy is not superior to dacarbazine, but leads to significantly more severe toxicities.Chemotherapy still plays an important role in metastatic melanoma, particularly for patients who are not suitable or have no access to highly efficacious new therapies. Pre-therapeutic chemosensitivity testing might be useful to identify optimal chemotherapy regimens for individual patients. This multicenter randomized phase-3 trial was aimed to test for superiority of chemosensitivity-directed combination chemotherapy compared to standard dacarbazine monochemotherapy, and to demonstrate the chemosensitivity test result as prognostic in metastatic melanoma. Chemo-naive patients with advanced melanoma were biopsied from metastatic lesions. Tumor cells were isolated and tested ex-vivo for sensitivity to chemotherapeutic agents using an ATP-based viability assay. Patients with evaluable test results were randomly assigned to receive either chemosensitivity-directed combination chemotherapy (paclitaxel+cisplatin, treosulfan+gemcitabine, treosulfan+cytarabine), or dacarbazine. The primary study endpoint was overall survival (OS). After inclusion of 287 patients and a median follow-up of 26 months, the per-protocol population (n=244) showed no difference in OS between chemosensitivity-directed therapy and dacarbazine (median 9.2 vs 9.0 months, HR=1.08, p=0.64). The disease control rate (CR+PR+SD) tended to be higher in patients treated with chemosensitivity-directed therapy (32.8% vs 23.0%, p=0.088); objective response rates (CR+PR) showed no difference between groups (10.7% vs 12.3%, p=0.90). Patients whose tumors were tested chemosensitive showed no better OS or response rate than patients with chemoresistant tumors. Severe toxicities (CTC grade 3-4) were significantly more frequently observed with chemosensitivity-directed combination chemotherapy than with dacarbazine (40.2% vs 12.3%, p<0.0001). These results indicate, that chemosensitivity-directed combination chemotherapy is not superior to dacarbazine, but leads to significantly more severe toxicities.
Wiener Klinische Wochenschrift | 2018
Christiane Thallinger; Thorsten Füreder; Matthias Preusser; Gerwin Heller; Leonhard Müllauer; Christoph Höller; Helmut Prosch; Natalija Frank; Rafal Swierzewski; Walter Berger; Ulrich Jäger; Christoph C. Zielinski
Neuro-oncology | 2014
Anna Sophie Berghoff; Barbara Kiesel; Georg Widhalm; Orsolya Rajky; Gerda Ricken; Adelheid Wöhrer; Felicitas Oberndorfer; Karin Dieckmann; Martin Filipits; Christine Marosi; Christoph Höller; Wolfgang Wick; Matthias Preusser
Annals of Oncology | 2014
Anna Sophie Berghoff; Adelheid Wöhrer; Georg Widhalm; Felicitas Oberndorfer; Karin Dieckmann; Martin Filipits; Christine Marosi; Christoph Höller; Wolfgang Wick; Matthias Preusser