Christoph Kiefer
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Kiefer.
international world wide web conferences | 2008
Markus Stocker; Andy Seaborne; Abraham Bernstein; Christoph Kiefer; Dave Reynolds
In this paper, we formalize the problem of Basic Graph Pattern (BGP) optimization for SPARQL queries and main memory graph implementations of RDF data. We define and analyze the characteristics of heuristics for selectivity-based static BGP optimization. The heuristics range from simple triple pattern variable counting to more sophisticated selectivity estimation techniques. Customized summary statistics for RDF data enable the selectivity estimation of joined triple patterns and the development of efficient heuristics. Using the Lehigh University Benchmark (LUBM), we evaluate the performance of the heuristics for the queries provided by the LUBM and discuss some of them in more details.
european semantic web conference | 2008
Christoph Kiefer; Abraham Bernstein
This research explores a new method for Semantic Web service matchmaking based on iSPARQL strategies, which enables to query the Semantic Web with techniques from traditional information retrieval. The strategies for matchmaking that we developed and evaluated can make use of a plethora of similarity measures and combination functions from SimPack--our library of similarity measures. We show how our combination of structured and imprecise querying can be used to perform hybrid Semantic Web service matchmaking. We analyze our approach thoroughly on a large OWL-S service test collection and show how our initial strategies can be improved by applying machine learning algorithms to result in very effective strategies for matchmaking.
international semantic web conference | 2007
Christoph Kiefer; Abraham Bernstein; Markus Stocker
This research explores three SPARQL-based techniques to solve Semantic Web tasks that often require similarity measures, such as semantic data integration, ontology mapping, and Semantic Web service matchmaking. Our aim is to see how far it is possible to integrate customized similarity functions (CSF) into SPARQL to achieve good results for these tasks. Our first approach exploits virtual triples calling property functions to establish virtual relations among resources under comparison; the second approach uses extension functions to filter out resources that do not meet the requested similarity criteria; finally, our third technique applies new solution modifiers to post-process a SPARQL solution sequence. The semantics of the three approaches are formally elaborated and discussed. We close the paper with a demonstration of the usefulness of our iSPARQL framework in the context of a data integration and an ontology mapping experiment.
mining software repositories | 2007
Christoph Kiefer; Abraham Bernstein; Jonas Tappolet
One of the most important decisions researchers face when analyzing the evolution of software systems is the choice of a proper data analysis/exchange format. Most existing formats have to be processed with special programs written specifically for that purpose and are not easily extendible. Most scientists, therefore, use their own data-base(s) requiring each of them to repeat the work of writing the import/export programs to their format. We present EvoOnt, a software repository data exchange format based on the Web Ontology Language (OWL). EvoOnt includes software, release, and bug-related information. Since OWL describes the semantics of the data, EvoOnt is (1) easily extendible, (2) comes with many existing tools, and (3) allows to derive assertions through its inherent Description Logic reasoning capabilities. The paper also shows iSPARQL -our SPARQL-based Semantic Web query engine containing similarity joins. Together with EvoOnt, iSPARQL can accomplish a sizable number of tasks sought in software repository mining projects, such as an assessment of the amount of change between versions or the detection of bad code smells. To illustrate the usefulness of EvoOnt (and iSPARQL), we perform a series of experiments with a real-world Java project. These show that a number of software analyses can be reduced to simple iSPARQL queries on an EvoOnt dataset.
international semantic web conference | 2005
Abraham Bernstein; Esther Kaufmann; Anne Göhring; Christoph Kiefer
The semantic web presents the vision of a distributed, dynamically growing knowledge base founded on formal logic. Common users, however, seem to have problems even with the simplest Boolean expressions. As queries from web search engines show, the great majority of users simply do not use Boolean expressions. So how can we help users to query a web of logic that they do not seem to understand? We address this problem by presenting a natural language interface to semantic web querying. The interface allows formulating queries in Attempto Controlled English (ACE), a subset of natural English. Each ACE query is translated into a discourse representation structure – a variant of the language of first-order logic – that is then translated into an N3-based semantic web querying language using an ontology-based rewriting framework. As the validation shows, our approach offers great potential for bridging the gap between the logic-based semantic web and its real-world users, since it allows users to query the semantic web without having to learn an unfamiliar formal language. Furthermore, we found that users liked our approach and designed good queries resulting in a very good retrieval performance (100% precision and 90% recall).
mining software repositories | 2006
Tobias Sager; Abraham Bernstein; Martin Pinzger; Christoph Kiefer
Similarity analysis of source code is helpful during development to provide, for instance, better support for code reuse. Consider a development environment that analyzes code while typing and that suggests similar code examples or existing implementations from a source code repository. Mining software repositories by means of similarity measures enables and enforces reusing existing code and reduces the developing effort needed by creating a shared knowledge base of code fragments. In information retrieval similarity measures are often used to find documents similar to a given query document. This paper extends this idea to source code repositories. It introduces our approach to detect similar Java classes in software projects using tree similarity algorithms. We show how our approach allows to find similar Java classes based on an evaluation of three tree-based similarity measures in the context of five user-defined test cases as well as a preliminary software evolution analysis of a medium-sized Java project. Initial results of our technique indicate that it (1) is indeed useful to identify similar Java classes, (2)successfully identifies the ex ante and ex post versions of refactored classes, and (3) provides some interesting insights into within-version and between-version dependencies of classes within a Java project.
european semantic web conference | 2008
Christoph Kiefer; Abraham Bernstein; André Locher
Exploiting the complex structure of relational data enables to build better models by taking into account the additional information provided by the links between objects. We extend this idea to the Semantic Web by introducing our novel SPARQL-ML approach to perform data mining for Semantic Web data. Our approach is based on traditional SPARQL and statistical relational learning methods, such as Relational Probability Trees and Relational Bayesian Classifiers. We analyze our approach thoroughly conducting three sets of experiments on synthetic as well as real-world data sets. Our analytical results show that our approach can be used for any Semantic Web data set to perform instance-based learning and classification. A comparison to kernel methods used in Support Vector Machines shows that our approach is superior in terms of classification accuracy.
european semantic web conference | 2007
Christoph Kiefer; Abraham Bernstein; Hong Joo Lee; Mark Klein; Markus Stocker
The vision of semantic business processes is to enable the integration and inter-operability of business processes across organizational boundaries. Since different organizations model their processes differently, the discovery and retrieval of similar semantic business processes is necessary in order to foster inter-organizational collaborations. This paper presents our approach of using iSPARQL --- our imprecise query engine based on iSPARQL --- to query the OWL MIT Process Handbook --- a large collection of over 5000 semantic business processes. We particularly show how easy it is to use iSPARQL to perform the presented process retrieval task. Furthermore, since choosing the best performing similarity strategy is a non-trivial, data-, and context-dependent task, we evaluate the performance of three simple and two human-engineered similarity strategies. In addition, we conduct machine learning experiments to learn similarity measures showing that complementary information contained in the different notions of similarity strategies provide a very high retrieval accuracy. Our preliminary results indicate that iSPARQL is indeed useful for extending the reach of queries and that it, therefore, is an enabler for inter- and intra-organizational collaborations.
extending database technology | 2006
Patrick Ziegler; Christoph Kiefer; Christoph Sturm; Klaus R. Dittrich; Abraham Bernstein
Ontologies are increasingly used to represent the intended real-world semantics of data and services in information systems. Unfortunately, different databases often do not relate to the same ontologies when describing their semantics. Consequently, it is desirable to have information about the similarity between ontology concepts for ontology alignment and integration. This paper presents the SOQA-SimPack Toolkit (SST), an ontology language independent Java API that enables generic similarity detection and visualization in ontologies. We demonstrate SST’s usefulness with the SOQA-SimPack Toolkit Browser, which allows users to graphically perform similarity calculations in ontologies.
Journal of Web Semantics | 2010
Jonas Tappolet; Christoph Kiefer; Abraham Bernstein
One of the most important decisions researchers face when analyzing software systems is the choice of a proper data analysis/exchange format. In this paper, we present EvoOnt, a set of software ontologies and data exchange formats based on OWL. EvoOnt models software design, release history information, and bug-tracking meta-data. Since OWL describes the semantics of the data, EvoOnt (1) is easily extendible, (2) can be processed with many existing tools, and (3) allows to derive assertions through its inherent Description Logic reasoning capabilities. The contribution of this paper is that it introduces a novel software evolution ontology that vastly simplifies typical software evolution analysis tasks. In detail, we show the usefulness of EvoOnt by repeating selected software evolution and analysis experiments from the 2004-2007 Mining Software Repositories Workshops (MSR). We demonstrate that if the data used for analysis were available in EvoOnt then the analyses in 75% of the papers at MSR could be reduced to one or at most two simple queries within off-the-shelf SPARQL tools. In addition, we present how the inherent capabilities of the Semantic Web have the potential of enabling new tasks that have not yet been addressed by software evolution researchers, e.g., due to the complexities of the data integration.