Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Kraus is active.

Publication


Featured researches published by Christoph Kraus.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Differential modulation of the default mode network via serotonin-1A receptors.

Andreas Hahn; Wolfgang Wadsak; Christian Windischberger; P. Baldinger; Anna Höflich; Jan Losak; Lukas Nics; Cécile Philippe; Georg S. Kranz; Christoph Kraus; Markus Mitterhauser; Georgios Karanikas; Siegfried Kasper; Rupert Lanzenberger

Reflecting ones mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT1A), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.


Cerebral Cortex | 2015

Disrupted Effective Connectivity Between the Amygdala and Orbitofrontal Cortex in Social Anxiety Disorder During Emotion Discrimination Revealed by Dynamic Causal Modeling for fMRI

Ronald Sladky; Anna Höflich; Martin Küblböck; Christoph Kraus; P. Baldinger; Ewald Moser; Rupert Lanzenberger; Christian Windischberger

Social anxiety disorder (SAD) is characterized by over-reactivity of fear-related circuits in social or performance situations and associated with marked social impairment. We used dynamic causal modeling (DCM), a method to evaluate effective connectivity, to test our hypothesis that SAD patients would exhibit dysfunctions in the amygdala–prefrontal emotion regulation network. Thirteen unmedicated SAD patients and 13 matched healthy controls performed a series of facial emotion and object discrimination tasks while undergoing fMRI. The emotion-processing network was identified by a task-related contrast and motivated the selection of the right amygdala, OFC, and DLPFC for DCM analysis. Bayesian model averaging for DCM revealed abnormal connectivity between the OFC and the amygdala in SAD patients. In healthy controls, this network represents a negative feedback loop. In patients, however, positive connectivity from OFC to amygdala was observed, indicating an excitatory connection. As we did not observe a group difference of the modulatory influence of the FACE condition on the OFC to amygdala connection, we assume a context-independent reduction of prefrontal control over amygdalar activation in SAD patients. Using DCM, it was possible to highlight not only the neuronal dysfunction of isolated brain regions, but also the dysbalance of a distributed functional network.


PLOS ONE | 2012

Increased Neural Habituation in the Amygdala and Orbitofrontal Cortex in Social Anxiety Disorder Revealed by fMRI

Ronald Sladky; Anna Höflich; Jacqueline Atanelov; Christoph Kraus; P. Baldinger; Ewald Moser; Rupert Lanzenberger; Christian Windischberger

A characterizing symptom of social anxiety disorder (SAD) is increased emotional reactivity towards potential social threat in combination with impaired emotion and stress regulation. While several neuroimaging studies have linked SAD with hyperreactivity in limbic brain regions when exposed to emotional faces, little is known about habituation in both the amygdala and neocortical regulation areas. 15 untreated SAD patients and 15 age- and gender-matched healthy controls underwent functional magnetic resonance imaging during repeated blocks of facial emotion () and object discrimination tasks (). Emotion processing networks were defined by a task-related contrast (). Linear regression was employed for assessing habituation effects in these regions. In both groups, the employed paradigm robustly activated the emotion processing and regulation network, including the amygdalae and orbitofrontal cortex (OFC). Statistically significant habituation effects were found in the amygdalae, OFC, and pulvinar thalamus of SAD patients. No such habituation was found in healthy controls. Concurrent habituation in the medial OFC and the amygdalae of SAD patients as shown in this study suggests intact functional integrity and successful short-term down-regulation of neural activation in brain areas responsible for emotion processing. Initial hyperactivation may be explained by an insufficient habituation to new stimuli during the first seconds of exposure. In addition, our results highlight the relevance of the orbitofrontal cortex in social anxiety disorders.


NeuroImage | 2014

P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: An EEG and fMRI experiment

Daniela M. Pfabigan; Eva Maria Seidel; Ronald Sladky; Andreas Hahn; Katharina Paul; Arvina Grahl; Martin Küblböck; Christoph Kraus; Allan Hummer; Georg S. Kranz; Christian Windischberger; Rupert Lanzenberger; Claus Lamm

The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation.


Human Brain Mapping | 2015

Uncertainty during pain anticipation: The adaptive value of preparatory processes

Eva Maria Seidel; Daniela M. Pfabigan; Andreas Hahn; Ronald Sladky; Arvina Grahl; Katharina Paul; Christoph Kraus; Martin Küblböck; Georg S. Kranz; Allan Hummer; Rupert Lanzenberger; Christian Windischberger; Claus Lamm

Objectives: Anticipatory processes prepare the organism for upcoming experiences. The aim of this study was to investigate neural responses related to anticipation and processing of painful stimuli occurring with different levels of uncertainty. Experimental design: Twenty‐five participants (13 females) took part in an electroencephalography and functional magnetic resonance imaging (fMRI) experiment at separate times. A visual cue announced the occurrence of an electrical painful or nonpainful stimulus, delivered with certainty or uncertainty (50% chance), at some point during the following 15 s. Principal observations: During the first 2 s of the anticipation phase, a strong effect of uncertainty was reflected in a pronounced frontal stimulus‐preceding negativity (SPN) and increased fMRI activation in higher visual processing areas. In the last 2 s before stimulus delivery, we observed stimulus‐specific preparatory processes indicated by a centroparietal SPN and posterior insula activation that was most pronounced for the certain pain condition. Uncertain anticipation was associated with attentional control processes. During stimulation, the results revealed that unexpected painful stimuli produced the strongest activation in the affective pain processing network and a more pronounced offset‐P2. Conclusions: Our results reflect that during early anticipation uncertainty is strongly associated with affective mechanisms and seems to be a more salient event compared to certain anticipation. During the last 2 s before stimulation, attentional control mechanisms are initiated related to the increased salience of uncertainty. Furthermore, stimulus‐specific preparatory mechanisms during certain anticipation also shaped the response to stimulation, underlining the adaptive value of stimulus‐targeted preparatory activity which is less likely when facing an uncertain event. Hum Brain Mapp 36:744–755, 2015.


NeuroImage | 2014

Gray matter and intrinsic network changes in the posterior cingulate cortex after selective serotonin reuptake inhibitor intake.

Christoph Kraus; Sebastian Ganger; Jan Losak; Andreas Hahn; Markus Savli; Georg S. Kranz; P. Baldinger; Christian Windischberger; Siegfried Kasper; Rupert Lanzenberger

Preclinical studies have demonstrated that serotonin (5-HT) challenge changes neuronal circuitries and microarchitecture. However, evidence in human subjects is missing. Pharmacologic magnetic resonance imaging (phMRI) applying selective 5-HT reuptake inhibitors (SSRIs) and high-resolution structural and functional brain assessment is able to demonstrate the impact of 5-HT challenge on neuronal network morphology and functional activity. To determine how SSRIs induce changes in gray matter and neuronal activity, we conducted a longitudinal study using citalopram and escitalopram. Seventeen healthy subjects completed a structural and functional phMRI study with randomized, cross-over, placebo-controlled, double-blind design. Significant gray matter increases were observed (among other regions) in the posterior cingulate cortex (PCC) and the ventral precuneus after SSRI intake of 10days, while decreases were observed within the pre- and postcentral gyri (all P<0.05, family-wise error [FWE] corrected). Furthermore, enhanced resting functional connectivity (rFC) within the ventral precuneus and PCC was associated with gray matter increases in the PCC (all FWE Pcorr<0.05). Corroborating these results, whole-brain connectivity density, measuring the brains functional network hubs, was significantly increased after SSRI-intake in the ventral precuneus and PCC (all FWE Pcorr<0.05). Short-term administration of SSRIs changes gray matter structures, consistent with previous work reporting enhancement of neuroplasticity by serotonergic neurotransmission. Furthermore, increased gray matter in the PCC is associated with increased functional connectivity in one of the brains metabolically most active regions. Our novel findings provide convergent evidence for dynamic alterations of brain structure and function associated with SSRI pharmacotherapy.


Human Brain Mapping | 2014

Attenuated serotonin transporter association between dorsal raphe and ventral striatum in major depression.

Andreas Hahn; Daniela Haeusler; Christoph Kraus; Anna Höflich; Georg S. Kranz; P. Baldinger; Markus Savli; Markus Mitterhauser; Wolfgang Wadsak; Georgios Karanikas; Siegfried Kasper; Rupert Lanzenberger

Suffering from anhedonia, patients with major depressive disorder (MDD) exhibit alterations in several parts of the serotonergic neurotransmitter system, which are in turn involved in reward processing. However, previous investigations of the serotonin transporter (SERT) focused on regional differences with varying results depending on the clinical syndrome. Here, we aimed to describe the serotonergic system of MDD patients on a network level by evaluating SERT associations across brain regions. Twenty medication free patients with major depression and 20 healthy controls underwent positron emission tomography using the radioligand [11C]DASB. SERT binding potentials (BPND) were quantified voxel‐wise with the multilinear reference tissue model 2. In addition, SERT BPND was extracted from the dorsal raphe nucleus (DRN) as an indicator of midbrain serotonergic neurotransmission. Whole‐brain linear regression analysis was applied to evaluate the association of DRN SERT bindings to those in projection areas, which was followed by ANCOVA to assess differences in interregional relationships between patients and controls. Although both groups showed widespread positive correlations, group differences were restricted to decreased SERT associations between the DRN and the ventral striatum (right and left respectively: t = 5.85, P < 0.05 corrected and t = 5.07, P < 0.1 corrected) when comparing MDD patients (R2 = 0.11 and 0.24) to healthy subjects (R2 = 0.72 and 0.66, P < 0.01 and 0.05 corrected). Adjusting for age and sex did not change these findings. This study indicates a disturbed regulation between key regions involved in reward processing via the SERT. Our interregional approach highlights the importance of evaluating pathophysiological alterations on a network level to gain complementary information in addition to regional investigations. Hum Brain Mapp 35:3857–3866, 2014.


NeuroImage | 2013

Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7 T

Andreas Hahn; Georg S. Kranz; Eva-Maria Seidel; Ronald Sladky; Christoph Kraus; Martin Küblböck; Daniela M. Pfabigan; Allan Hummer; Arvina Grahl; Sebastian Ganger; Christian Windischberger; Claus Lamm; Rupert Lanzenberger

Progressing from 3T to 7 T functional MRI enables marked improvements of human brain imaging in vivo. Although direct comparisons demonstrated advantages concerning blood oxygen level dependent (BOLD) signal response and spatial specificity, these mostly focused on single brain regions with rather simple tasks. Considering that physiological noise also increases with higher field strength, it is not entirely clear whether the advantages of 7T translate equally to the entire brain during tasks which elicit more complex neuronal processing. Therefore, we investigated the difference between 3T and 7 T in response to transcutaneous electrical painful and non-painful stimulation in 22 healthy subjects. For painful stimuli vs. baseline, stronger activations were observed at 7 T in several brain regions including the insula and supplementary motor area, but not the secondary somatosensory cortex (p<0.05 FWE-corrected). Contrasting painful vs. non-painful stimulation limited the differences between the field strengths to the periaqueductal gray (PAG, p<0.001 uncorrected) due to a similar signal increase at 7 T for both the target and specific control condition in most brain regions. This regional specificity obtained for the PAG at higher field strengths was confirmed by an additional spatial normalization strategy optimized for the brainstem. Here, robust BOLD responses were obtained in the dorsal PAG at 7 T (p<0.05 FWE-corrected), whereas at 3T activation was completely missing for the contrast against non-painful stimuli. To summarize, our findings support previously reported benefits obtained at ultra-high field strengths also for complex activation patterns elicited by painful electrical stimulation. However, this advantage depends on the region and even more on the contrast of interest. The greatest gain at 7 T was observed within the small brainstem region of the PAG, where the increased field strength offered marked improvement for the localization of activation foci with high spatial specificity.


NeuroImage | 2015

Voxel-based morphometry at ultra-high fields. A comparison of 7 T and 3 T MRI data

R. Seiger; Andreas Hahn; Allan Hummer; Georg S. Kranz; Sebastian Ganger; Martin Küblböck; Christoph Kraus; Ronald Sladky; Siegfried Kasper; Christian Windischberger; Rupert Lanzenberger

Recent technological progress enables MRI recordings at ultra-high fields of 7 T and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7 T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7 T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7 T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs. 7 T) and pulse sequence (MPRAGE vs. MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7 T MPRAGE and 7 T MP2RAGE. Due to the fact that 7 T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7 T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7 T. Besides minor exceptions, these results were observed for 7 T MPRAGE as well for the 7 T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7 T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7 T and also for the advanced MP2RAGE sequence. Hence, our data support the use of 7 T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of the inferior cortical regions, cerebellum and subcortical regions still remains challenging at 7 T even if the advanced MP2RAGE sequence is used.


Brain Structure & Function | 2014

Cerebral serotonin transporter asymmetry in females, males and male-to-female transsexuals measured by PET in vivo

Georg S. Kranz; Andreas Hahn; P. Baldinger; Daniela Haeusler; Cécile Philippe; Ulrike Kaufmann; Wolfgang Wadsak; Markus Savli; Anna Hoeflich; Christoph Kraus; Markus Mitterhauser; Siegfried Kasper; Rupert Lanzenberger

The serotonergic system modulates brain functions that are considered to underlie affective states, emotion and cognition. Several lines of evidence point towards a strong lateralization of these mental processes, which indicates similar asymmetries in associated neurotransmitter systems. Here, our aim was to investigate a potential asymmetry of the serotonin transporter distribution using positron emission tomography and the radioligand [11C]DASB in vivo. As brain asymmetries may differ between sexes, we further aimed to compare serotonin transporter asymmetry between females, males and male-to-female (MtF) transsexuals whose brains are considered to be partly feminized. Voxel-wise analysis of serotonin transporter binding in all groups showed both strong left and rightward asymmetries in several cortical and subcortical structures including temporal and frontal cortices, anterior cingulate, hippocampus, caudate and thalamus. Further, male controls showed a rightward asymmetry in the midcingulate cortex, which was absent in females and MtF transsexuals. The present data support the notion of a lateralized serotonergic system, which is in line with previous findings of asymmetric serotonin-1A receptor distributions, extracellular serotonin concentrations, serotonin turnover and uptake. The absence of serotonin transporter asymmetry in the midcingulate in MtF transsexuals may be attributed to an absence of brain masculinization in this region.

Collaboration


Dive into the Christoph Kraus's collaboration.

Top Co-Authors

Avatar

Rupert Lanzenberger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Siegfried Kasper

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Andreas Hahn

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg S. Kranz

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

P. Baldinger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Markus Mitterhauser

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Wadsak

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Ronald Sladky

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Anna Höflich

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge