Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Kuppe is active.

Publication


Featured researches published by Christoph Kuppe.


Journal of The American Society of Nephrology | 2011

Parietal Epithelial Cells Participate in the Formation of Sclerotic Lesions in Focal Segmental Glomerulosclerosis

Bart Smeets; Christoph Kuppe; Eva Maria Sicking; Astrid Fuss; Peggy Jirak; Toin H. van Kuppevelt; Karlhans Endlich; Jack F.M. Wetzels; Hermann Josef Gröne; Jürgen Floege; Marcus J. Moeller

The pathogenesis of the development of sclerotic lesions in focal segmental glomerulosclerosis (FSGS) remains unknown. Here, we selectively tagged podocytes or parietal epithelial cells (PECs) to determine whether PECs contribute to sclerosis. In three distinct models of FSGS (5/6-nephrectomy + DOCA-salt; the murine transgenic chronic Thy1.1 model; or the MWF rat) and in human biopsies, the primary injury to induce FSGS associated with focal activation of PECs and the formation of cellular adhesions to the capillary tuft. From this entry site, activated PECs invaded the affected segment of the glomerular tuft and deposited extracellular matrix. Within the affected segment, podocytes were lost and mesangial sclerosis developed within the endocapillary compartment. In conclusion, these results demonstrate that PECs contribute to the development and progression of the sclerotic lesions that define FSGS, but this pathogenesis may be relevant to all etiologies of glomerulosclerosis.


Hepatology | 2012

Chemokine Cxcl9 attenuates liver fibrosis‐associated angiogenesis in mice

Hacer Sahin; Erawan Borkham-Kamphorst; Christoph Kuppe; Mirko Moreno Zaldivar; Christoph Grouls; Muhammad Alsamman; Andreas Nellen; P. Schmitz; Daniel Heinrichs; Marie-Luise Berres; Dennis Doleschel; D Scholten; Ralf Weiskirchen; Marcus J. Moeller; Fabian Kiessling; Christian Trautwein; Hermann E. Wasmuth

Recent data suggest that the chemokine receptor CXCR3 is functionally involved in fibroproliferative disorders, including liver fibrosis. Neoangiogenesis is an important pathophysiological feature of liver scarring, but a functional role of angiostatic CXCR3 chemokines in this process is unclear. We therefore investigated neoangiogenesis in carbon tetrachloride (CCl4)‐induced liver fibrosis in Cxcr3−/− and wildtype mice by histological, molecular, and functional imaging methods. Furthermore, we assessed the direct role of vascular endothelial growth factor (VEGF) overexpression on liver angiogenesis and the fibroproliferative response using a Tet‐inducible bitransgenic mouse model. The feasibility of attenuation of angiogenesis and associated liver fibrosis by therapeutic treatment with the angiostatic chemokine Cxcl9 was systematically analyzed in vitro and in vivo. The results demonstrate that fibrosis progression in Cxcr3−/− mice was strongly linked to enhanced neoangiogenesis and VEGF/VEGFR2 expression compared with wildtype littermates. Systemic VEGF overexpression led to a fibrogenic response within the liver and was associated with a significantly increased Cxcl9 expression. In vitro, Cxcl9 displayed strong antiproliferative and antimigratory effects on VEGF‐stimulated endothelial cells and stellate cells by way of reduced VEGFR2 (KDR), phospholipase Cγ (PLCγ), and extracellular signal‐regulated kinase (ERK) phosphorylation, identifying this chemokine as a direct counter‐regulatory molecule of VEGF signaling within the liver. Accordingly, systemic administration of Cxcl9 led to a strong attenuation of neoangiogenesis and experimental liver fibrosis in vivo. Conclusion: The results identify direct angiostatic and antifibrotic effects of the Cxcr3 ligand Cxcl9 in a model of experimental liver fibrosis. The amelioration of liver damage by systemic application of Cxcl9 might offer a novel therapeutic approach for chronic liver diseases associated with increased neoangiogenesis. (HEPATOLOGY 2012)


Journal of The American Society of Nephrology | 2014

The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

Katja Berger; Kevin Schulte; Peter Boor; Christoph Kuppe; Toin H. van Kuppevelt; Jürgen Floege; Bart Smeets; Marcus J. Moeller

Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowmans capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowmans capsule expressed podocyte markers, and cells on Bowmans capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowmans capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowmans capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowmans capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.


Journal of The American Society of Nephrology | 2010

Electrical Forces Determine Glomerular Permeability

Ralf Hausmann; Christoph Kuppe; Herbert Egger; Frank Schweda; Volker Knecht; Marlies Elger; Sylvia Menzel; Douglas Somers; Gerald S. Braun; Astrid Fuss; Sandra Uhlig; Wilhelm Kriz; George A. Tanner; Jürgen Floege; Marcus J. Moeller

There is ongoing controversy about the mechanisms that determine the characteristics of the glomerular filter. Here, we tested whether flow across the glomerular filter generates extracellular electrical potential differences, which could be an important determinant of glomerular filtration. In micropuncture experiments in Necturus maculosus, we measured a potential difference across the glomerular filtration barrier that was proportional to filtration pressure (-0.045 mV/10 cm H₂O). The filtration-dependent potential was generated without temporal delay and was negative within Bowmans space. Perfusion with the cationic polymer protamine abolished the potential difference. We propose a mathematical model that considers the relative contributions of diffusion, convection, and electrophoretic effects on the total flux of albumin across the filter. According to this model, potential differences of -0.02 to -0.05 mV can induce electrophoretic effects that significantly influence the glomerular sieving coefficient of albumin. This model of glomerular filtration has the potential to provide a mechanistic theory, based on experimental data, about the filtration characteristics of the glomerular filtration barrier. It provides a unique approach to the microanatomy of the glomerulus, renal autoregulation, and the pathogenesis of proteinuria.


PLOS ONE | 2012

Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

Nazanin Kabgani; Tamara Grigoleit; Kevin Schulte; Antonio S. Sechi; Sibille Sauer-Lehnen; Carmen G. Tag; Peter Boor; Christoph Kuppe; Gregor Warsow; Sandra Schordan; Jörg Mostertz; Ravi Kumar Chilukoti; Georg Homuth; Nicole Endlich; Frank Tacke; Ralf Weiskirchen; Georg Fuellen; Karlhans Endlich; Jürgen Floege; Bart Smeets; Marcus J. Moeller

Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or podocytes using FACsorting. By this approach, the morphology of primary glomerular epithelial cells in culture could be resolved: Primary podocytes formed either large cells with intracytoplasmatic extensions or smaller spindle shaped cells, depending on specific culture conditions. Primary PECs were small and exhibited a spindle-shaped or polygonal morphology. In the very early phases of primary culture, rapid changes in gene expression (e.g. of WT-1 and Pax-2) were observed. However, after prolonged culture primary PECs and podocytes still segregated clearly in a transcriptome analysis - demonstrating that the origin of primary cell cultures is important. Of the classical markers, synaptopodin and podoplanin expression were differentially regulated the most in primary PEC and podocyte cultures. However, no expression of any endogenous gene allowed to differentiate between the two cell types in culture. Finally, we show that the transcription factor WT1 is also expressed by PECs. In summary, genetic tagging of PECs and podocytes is a novel and necessary tool to derive pure primary cultures with proven origin. These cultures will be a powerful tool for the emerging field of parietal epithelial cell biology.


Kidney International | 2015

Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis

Christoph Kuppe; Hermann Josef Gröne; Tammo Ostendorf; Toin H. van Kuppevelt; Peter Boor; Jürgen Floege; Bart Smeets; Marcus J. Moeller

Parietal epithelial cells (PECs) are involved in the development of sclerotic lesions in primary focal and segmental glomerulosclerosis (FSGS). Here, the role of PECs was explored in the more common secondary FSGS lesions in 68 patient biopsies, diagnosed with 11 different frequently or rarely encountered glomerular pathologies and additional secondary FSGS lesions. For each biopsy, one section was quadruple stained for PECs (ANXA3), podocytes (synaptopodin), PEC matrix (LKIV69), and Hoechst (nuclei), and a second was quadruple stained for activated PECs (CD44 and cytokeratin-19), PEC matrix, and nuclei. In all lesions, cellular adhesions (synechiae) between Bowmans capsule and the tuft were formed by cells expressing podocyte and/or PEC markers. Cells expressing PEC markers were detected in all FSGS lesions independent of the underlying glomerular disease and often stained positive for markers of activation. Small FSGS lesions, which were hardly identified on PAS sections previously, were detectable by immunofluorescent staining using PEC markers, potentially improving the diagnostic sensitivity to identify these lesions. Thus, similar patterns of cells expressing podocyte and/or PEC markers were found in the formation of secondary FSGS lesions independent of the underlying glomerular disease. Hence, our findings support the hypothesis that FSGS lesions follow a final cellular pathway to nephron loss that includes involvement of cells expressing PEC markers.


Journal of The American Society of Nephrology | 2017

Investigations of Glucocorticoid Action in GN

Christoph Kuppe; Claudia R.C. van Roeyen; Katja Leuchtle; Nazanin Kabgani; Michael Vogt; Marc A. M. J. van Zandvoort; Bart Smeets; Jürgen Floege; Hermann Josef Gröne; Marcus J. Moeller

For several decades, glucocorticoids have been used empirically to treat rapid progressive GN. It is commonly assumed that glucocorticoids act primarily by dampening the immune response, but the mechanisms remain incompletely understood. In this study, we inactivated the glucocorticoid receptor (GR) specifically in kidney epithelial cells using Pax8-Cre/GRfl/fl mice. Pax8-Cre/GRfl/fl mice did not exhibit an overt spontaneous phenotype. In mice treated with nephrotoxic serum to induce crescentic nephritis (rapidly progressive GN), this genetic inactivation of the GR in kidney epithelial cells exerted renal benefits, including inhibition of albuminuria and cellular crescent formation, similar to the renal benefits observed with high-dose prednisolone in control mice. However, genetic inactivation of the GR in kidney epithelial cells did not induce the immunosuppressive effects observed with prednisolone. In vitro, prednisolone and the pharmacologic GR antagonist mifepristone each acted directly on primary cultures of parietal epithelial cells, inhibiting cellular outgrowth and proliferation. In wild-type mice, pharmacologic treatment with the GR antagonist mifepristone also attenuated disease as effectively as high-dose prednisolone without the systemic immunosuppressive effects. Collectively, these data show that glucocorticoids act directly on activated glomerular parietal epithelial cells in crescentic nephritis. Furthermore, we identified a novel therapeutic approach in crescentic nephritis, that of glucocorticoid antagonism, which was at least as effective as high-dose prednisolone with potentially fewer adverse effects.


Current Opinion in Nephrology and Hypertension | 2015

Progress and controversies in unraveling the glomerular filtration mechanism.

Turgay Saritas; Christoph Kuppe; Marcus J. Moeller

Purpose of reviewAt first sight, the glomerular filter appears like a problem that should be easily solved. The majority of researchers view the filter like an impermeable wall perforated by specialized and size-selective pores (pore model). However, the fact that this model is in conflict with many of the experimental findings suggests that it may not yet be complete. Recent findingsIn the more recent electrokinetic model, we have proposed including electrical effects (streaming potentials). The present review investigates how this can provide a relatively simple mechanistic explanation for the great majority of the so far unexplained characteristics of the filter, for example why the filter never clogs. SummaryUnderstanding how the glomerular filter functions is a prerequisite to investigate the pathogenesis of proteinuric glomerular diseases and the link between glomerular proteinuria and cardiovascular disease.


Archives of Pathology & Laboratory Medicine | 2014

Renal lipidosis in patients enrolled in a methadone substitution program.

Stefan Porubsky; Christoph Kuppe; Tanja Maier; Horst Walter Birk; Markus Wörnle; Marcus J. Moeller; Jürgen Floege; Hermann Josef Gröne

Kidney biopsies often show accumulation of lipids or lipidlike material. Evidence has been provided that lipids can directly initiate and contribute to the progression of glomerular and tubulointerstitial lesions. In this study we describe a renal lipidosis occurring in patients with a positive history of narcotic abuse who were enrolled in a methadone substitution program. All 3 patients presented with proteinuria (2.5-20 g/d) and impaired renal function. Renal biopsy revealed a pronounced extracellular and intracellular deposition of lipidlike material in the glomerular, interstitial, and tubular compartments. Known causes of lipid storage could be excluded clinically and morphologically. We consider this to be a distinct renal lipidosis associated with narcotic abuse, methadone intake, or intravenous abuse thereof.


Current Opinion in Nephrology and Hypertension | 2016

Role of mesenchymal stem cells in kidney injury and fibrosis.

Christoph Kuppe; Rafael Kramann

Purpose of reviewMultiple studies have established the beneficial role of mesenchymal stem cell (MSC) therapy for kidney injury. In this review we will discuss the recent identification of Gli1 as a marker for perivascular MSC and the role of this cell population in kidney fibrosis. Recent findingsRecent studies demonstrate that expression of the hedgehog transcriptional activator Gli1 specifically marks perivascular MSC. Genetic fate tracing of MSC in kidney injury revealed their contribution to the myofibroblast pool whereas ablation of MSC reduced kidney fibrosis. Furthermore, strong evidence suggests that pharmacologically targeting Gli proteins inhibits cell-cycle progression of myofibroblasts in kidney fibrosis and is a promising therapeutic strategy in chronic kidney disease. SummaryAlthough there is tremendous excitement about MSC as cellular therapy in kidney injury it has been shown that resident perivascular MSC are a major source of myofibroblasts and a novel therapeutic target in kidney fibrosis. While resident kidney MSC might also be involved in capillary rarefaction after injury and during fibrosis progression their potential role in kidney repair, angiogenesis, and regeneration remains unclear. Further studies are needed to identify the molecular pathways that control the profibrotic versus proregenerative role of resident MSC in kidney injury and repair.

Collaboration


Dive into the Christoph Kuppe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Smeets

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

Hermann Josef Gröne

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid Fuss

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Boor

RWTH Aachen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge