Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Niederalt is active.

Publication


Featured researches published by Christoph Niederalt.


Frontiers in Physiology | 2011

A Computational Systems Biology Software Platform for Multiscale Modeling and Simulation: Integrating Whole-Body Physiology, Disease Biology, and Molecular Reaction Networks

Thomas Eissing; Lars Kuepfer; Corina Becker; Michael Block; Katrin Coboeken; Thomas Gaub; Linus Goerlitz; Juergen Jaeger; Roland Loosen; Bernd Ludewig; Michaela Meyer; Christoph Niederalt; Michael Sevestre; Hans-Ulrich Siegmund; Juri Solodenko; Kirstin Thelen; Ulrich Telle; Wolfgang Weiss; Thomas Wendl; Stefan Willmann; Joerg Lippert

Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multiscale by nature, project work, and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug–drug, or drug–metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach.


Blood | 2016

Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives

Julio Lahoz-Beneytez; Marjet Elemans; Yan Zhang; Raya Ahmed; Arafa Salam; Michael Block; Christoph Niederalt; Becca Asquith; Derek C. Macallan

Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day.


CPT: Pharmacometrics & Systems Pharmacology | 2016

Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model

Lars Kuepfer; Christoph Niederalt; Thomas Wendl; Jan-Frederik Schlender; Willmann S; Lippert J; Michael Block; Thomas Eissing; Donato Teutonico

The aim of this tutorial is to introduce the fundamental concepts of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling with a special focus on their practical implementation in a typical PBPK model building workflow. To illustrate basic steps in PBPK model building, a PBPK model for ciprofloxacin will be constructed and coupled to a pharmacodynamic model to simulate the antibacterial activity of ciprofloxacin treatment.


PLOS Computational Biology | 2014

Spatio-temporal simulation of first pass drug perfusion in the liver.

Lars Ole Schwen; Markus Krauss; Christoph Niederalt; Felix Gremse; Fabian Kiessling; Andrea Schenk; Tobias Preusser; Lars Kuepfer

The liver is the central organ for detoxification of xenobiotics in the body. In pharmacokinetic modeling, hepatic metabolization capacity is typically quantified as hepatic clearance computed as degradation in well-stirred compartments. This is an accurate mechanistic description once a quasi-equilibrium between blood and surrounding tissue is established. However, this model structure cannot be used to simulate spatio-temporal distribution during the first instants after drug injection. In this paper, we introduce a new spatially resolved model to simulate first pass perfusion of compounds within the naive liver. The model is based on vascular structures obtained from computed tomography as well as physiologically based mass transfer descriptions obtained from pharmacokinetic modeling. The physiological architecture of hepatic tissue in our model is governed by both vascular geometry and the composition of the connecting hepatic tissue. In particular, we here consider locally distributed mass flow in liver tissue instead of considering well-stirred compartments. Experimentally, the model structure corresponds to an isolated perfused liver and provides an ideal platform to address first pass effects and questions of hepatic heterogeneity. The model was evaluated for three exemplary compounds covering key aspects of perfusion, distribution and metabolization within the liver. As pathophysiological states we considered the influence of steatosis and carbon tetrachloride-induced liver necrosis on total hepatic distribution and metabolic capacity. Notably, we found that our computational predictions are in qualitative agreement with previously published experimental data. The simulation results provide an unprecedented level of detail in compound concentration profiles during first pass perfusion, both spatio-temporally in liver tissue itself and temporally in the outflowing blood. We expect our model to be the foundation of further spatially resolved models of the liver in the future.


Frontiers in Physiology | 2013

Development of a Physiologically Based Computational Kidney Model to Describe the Renal Excretion of Hydrophilic Agents in Rats

Christoph Niederalt; Thomas Wendl; Lars Kuepfer; Karina Claassen; Roland Loosen; Stefan Willmann; Joerg Lippert; Marcus Schultze-Mosgau; Julia Winkler; Rolf Burghaus; Matthias Bräutigam; Hubertus Pietsch; Philipp Lengsfeld

A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption.


Frontiers in Physiology | 2014

Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban—an oral, direct Factor Xa inhibitor

Rolf Burghaus; Katrin Coboeken; Thomas Gaub; Christoph Niederalt; Anke Sensse; Hans-Ulrich Siegmund; Wolfgang Weiss; Wolfgang Mueck; Takahiko Tanigawa; Jörg Lippert

The long-lasting anticoagulant effect of vitamin K antagonists can be problematic in cases of adverse drug reactions or when patients are switched to another anticoagulant therapy. The objective of this study was to examine in silico the anticoagulant effect of rivaroxaban, an oral, direct Factor Xa inhibitor, combined with the residual effect of discontinued warfarin. Our simulations were based on the recommended anticoagulant dosing regimen for stroke prevention in patients with atrial fibrillation. The effects of the combination of discontinued warfarin plus rivaroxaban were simulated using an extended version of a previously validated blood coagulation computer model. A strong synergistic effect of the two distinct mechanisms of action was observed in the first 2–3 days after warfarin discontinuation; thereafter, the effect was close to additive. Nomograms for the introduction of rivaroxaban therapy after warfarin discontinuation were derived for Caucasian and Japanese patients using safety and efficacy criteria described previously, together with the coagulation model. The findings of our study provide a mechanistic pharmacologic rationale for dosing schedules during the therapy switch from warfarin to rivaroxaban and support the switching strategies as outlined in the Summary of Product Characteristics and Prescribing Information for rivaroxaban.


Journal of Pharmacokinetics and Pharmacodynamics | 2018

A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim

Christoph Niederalt; Lars Kuepfer; Juri Solodenko; Thomas Eissing; Hans-Ulrich Siegmund; Michael Block; Stefan Willmann; Jörg Lippert

Proteins are an increasingly important class of drugs used as therapeutic as well as diagnostic agents. A generic physiologically based pharmacokinetic (PBPK) model was developed in order to represent at whole body level the fundamental mechanisms driving the distribution and clearance of large molecules like therapeutic proteins. The model was built as an extension of the PK-Sim model for small molecules incorporating (i) the two-pore formalism for drug extravasation from blood plasma to interstitial space, (ii) lymph flow, (iii) endosomal clearance and (iv) protection from endosomal clearance by neonatal Fc receptor (FcRn) mediated recycling as especially relevant for antibodies. For model development and evaluation, PK data was used for compounds with a wide range of solute radii. The model supports the integration of knowledge gained during all development phases of therapeutic proteins, enables translation from pre-clinical species to human and allows predictions of tissue concentration profiles which are of relevance for the analysis of on-target pharmacodynamic effects as well as off-target toxicity. The current implementation of the model replaces the generic protein PBPK model available in PK-Sim since version 4.2 and becomes part of the Open Systems Pharmacology Suite.


Frontiers in Immunology | 2017

Physiologically Based Simulations of Deuterated Glucose for Quantifying Cell Turnover in Humans

Julio Lahoz-Beneytez; Stephan Schaller; Derek C. Macallan; Thomas Eissing; Christoph Niederalt; Becca Asquith

In vivo [6,6-2H2]-glucose labeling is a state-of-the-art technique for quantifying cell proliferation and cell disappearance in humans. However, there are discrepancies between estimates of T cell proliferation reported in short (1-day) versus long (7-day) 2H2-glucose studies and very-long (9-week) 2H2O studies. It has been suggested that these discrepancies arise from underestimation of true glucose exposure from intermittent blood sampling in the 1-day study. Label availability in glucose studies is normally approximated by a “square pulse” (Sq pulse). Since the body glucose pool is small and turns over rapidly, the availability of labeled glucose can be subject to large fluctuations and the Sq pulse approximation may be very inaccurate. Here, we model the pharmacokinetics of exogenous labeled glucose using a physiologically based pharmacokinetic (PBPK) model to assess the impact of a more complete description of label availability as a function of time on estimates of CD4+ and CD8+ T cell proliferation and disappearance. The model enabled us to predict the exposure to labeled glucose during the fasting and de-labeling phases, to capture the fluctuations of labeled glucose availability caused by the intake of food or high-glucose beverages, and to recalculate the proliferation and death rates of immune cells. The PBPK model was used to reanalyze experimental data from three previously published studies using different labeling protocols. Although using the PBPK enrichment profile decreased the 1-day proliferation estimates by about 4 and 7% for CD4 and CD8+ T cells, respectively, differences with the 7-day and 9-week studies remained significant. We conclude that the approximations underlying the “square pulse” approach—recently suggested as the most plausible hypothesis—only explain a component of the discrepancy in published T cell proliferation rate estimates.


Archive | 2016

PBPK Modelling of Intracellular Drug Delivery Through Active and Passive Transport Processes

Lars Kuepfer; Christoph Niederalt; Thomas Wendl; Jan-Frederik Schlender; Michael Block; Thomas Eissing; Donato Teutonico

Physiologically based pharmacokinetic (PBPK) models describe adsorption, distribution, metabolisation and excretion (ADME) of drugs in the body of an organism based on a large amount of prior anatomical and physiological knowledge. In contrast to compartmental pharmacokinetic modeling which uses rather empirical model structures, PBPK models aim for a detailed mechanistic representation of physiological processes underlying drug pharmacokinetics within the body. That means that the relevant organs or tissues of an organism are explicitly represented in a PBPK model. Organs in PBPK models are usually divided in subcompartments such as plasma, interstitial space, intracellular space and red blood cells. Mass transfer between the different compartments which ultimately governs intracellular drug delivery is quantified either by so-called distribution models for the calculation of organ-plasma partition coefficients or by permeability-surface area products quantifying passive diffusion, respectively. Notably, both types of calculation methods are parameterized based upon the physicochemical properties of the investigated drug, respectively. These properties include amongst others lipophilicity and the molecular weight of the compound. Additional physiological information ranging from the whole body level (e.g. organ volumes, blood flow rates, tissue composition) to relative tissue-specific protein abundance is explicitly provided in the model. PBPK models are nowadays routinely used to analyze pharmacokinetics in drug development Due to the large amount of mechanistic information which is implicitly provided in the structural equations, PBPK models are in particular well-suited for both in-depth analyses of ADME processes underlying drug pharmacokinetics as well as for extrapolation to novel indications, patient populations or treatment designs. In this review we will present and discuss calculation methods used in PBPK model to describe and to quantify intracellular drug delivery.


Theoretical Biology and Medical Modelling | 2007

Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models

Michaela Vossen; Michael Sevestre; Christoph Niederalt; In-Jin Jang; Stefan Willmann; Andrea N. Edginton

Collaboration


Dive into the Christoph Niederalt's collaboration.

Researchain Logo
Decentralizing Knowledge