Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Krauss is active.

Publication


Featured researches published by Markus Krauss.


PLOS Computational Biology | 2012

Integrating cellular metabolism into a multiscale whole-body model.

Markus Krauss; Stephan Schaller; Steffen Borchers; Rolf Findeisen; Jörg Lippert; Lars Kuepfer

Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development.


Journal of Pharmaceutical Sciences | 2015

A Systematic Evaluation of the Use of Physiologically Based Pharmacokinetic Modeling for Cross-Species Extrapolation

Christoph Thiel; Sebastian Schneckener; Markus Krauss; Ahmed Ghallab; Ute Hofmann; Tobias Kanacher; Sebastian Zellmer; Rolf Gebhardt; Jan G. Hengstler; Lars Kuepfer

Transfer of knowledge along the different phases of drug development is a fundamental process in pharmaceutical research. In particular, cross-species extrapolation between different laboratory animals and further on to first-in-human trials is challenging because of the uncertain comparability of physiological processes. Physiologically based pharmacokinetic (PBPK) modeling allows translation of mechanistic knowledge from one species to another by specifically considering physiological and biochemical differences in between. We here evaluated different knowledge-driven approaches for cross-species extrapolation by systematically incorporating specific model parameter domains of a target species into the PBPK model of a reference species. Altogether, 15 knowledge-driven approaches were applied to murine and human PBPK models of 10 exemplary drugs resulting in 300 different extrapolations. Statistical analysis of the quality of the different extrapolations revealed not only species-specific physiology as the key determinant in cross-species extrapolation but also identified a synergistic effect when considering both kinetic rate constants and gene expression profiles of relevant enzymes and transporters. Moreover, we show that considering species-specific physiology, plasma protein binding, enzyme and transport kinetics, as well as tissue-specific gene expression profiles in PBPK modeling increases accuracy of cross-species extrapolations and thus supports first-in-human trials based on prior preclinical knowledge.


PLOS Computational Biology | 2014

Spatio-temporal simulation of first pass drug perfusion in the liver.

Lars Ole Schwen; Markus Krauss; Christoph Niederalt; Felix Gremse; Fabian Kiessling; Andrea Schenk; Tobias Preusser; Lars Kuepfer

The liver is the central organ for detoxification of xenobiotics in the body. In pharmacokinetic modeling, hepatic metabolization capacity is typically quantified as hepatic clearance computed as degradation in well-stirred compartments. This is an accurate mechanistic description once a quasi-equilibrium between blood and surrounding tissue is established. However, this model structure cannot be used to simulate spatio-temporal distribution during the first instants after drug injection. In this paper, we introduce a new spatially resolved model to simulate first pass perfusion of compounds within the naive liver. The model is based on vascular structures obtained from computed tomography as well as physiologically based mass transfer descriptions obtained from pharmacokinetic modeling. The physiological architecture of hepatic tissue in our model is governed by both vascular geometry and the composition of the connecting hepatic tissue. In particular, we here consider locally distributed mass flow in liver tissue instead of considering well-stirred compartments. Experimentally, the model structure corresponds to an isolated perfused liver and provides an ideal platform to address first pass effects and questions of hepatic heterogeneity. The model was evaluated for three exemplary compounds covering key aspects of perfusion, distribution and metabolization within the liver. As pathophysiological states we considered the influence of steatosis and carbon tetrachloride-induced liver necrosis on total hepatic distribution and metabolic capacity. Notably, we found that our computational predictions are in qualitative agreement with previously published experimental data. The simulation results provide an unprecedented level of detail in compound concentration profiles during first pass perfusion, both spatio-temporally in liver tissue itself and temporally in the outflowing blood. We expect our model to be the foundation of further spatially resolved models of the liver in the future.


In Silico Pharmacology | 2013

Using Bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification

Markus Krauss; Rolf Burghaus; Jörg Lippert; Mikko Niemi; Pertti J. Neuvonen; Andreas Schuppert; Stefan Willmann; Lars Kuepfer; Linus Görlitz

PurposeInter-individual variability in clinical endpoints and occurrence of potentially severe adverse effects represent an enormous challenge in drug development at all phases of (pre-)clinical research. To ensure patient safety it is important to identify adverse events or critical subgroups within the population as early as possible. Hence, a comprehensive understanding of the processes governing pharmacokinetics and pharmacodynamics is of utmost importance. In this paper we combine Bayesian statistics with detailed mechanistic physiologically-based pharmacokinetic (PBPK) models. On the example of pravastatin we demonstrate that this combination provides a powerful tool to investigate inter-individual variability in groups of patients and to identify clinically relevant homogenous subgroups in an unsupervised approach. Since PBPK models allow the identification of physiological, drug-specific and genotype-specific knowledge separately, our approach supports knowledge-based extrapolation to other drugs or populations.MethodsPBPK models are based on generic distribution models and extensive collections of physiological parameters and allow a mechanistic investigation of drug distribution and drug action. To systematically account for parameter variability within patient populations, a Bayesian-PBPK approach is developed rigorously quantifying the probability of a parameter given the amount of information contained in the measured data. Since these parameter distributions are high-dimensional, a Markov chain Monte Carlo algorithm is used, where the physiological and drug-specific parameters are considered in separate blocks.ResultsConsidering pravastatin pharmacokinetics as an application example, Bayesian-PBPK is used to investigate inter-individual variability in a cohort of 10 patients. Correlation analyses infer structural information about the PBPK model. Moreover, homogeneous subpopulations are identified a posteriori by examining the parameter distributions, which can even be assigned to a polymorphism in the hepatic organ anion transporter OATP1B1.ConclusionsThe presented Bayesian-PBPK approach systematically characterizes inter-individual variability within a population by updating prior knowledge about physiological parameters with new experimental data. Moreover, clinically relevant homogeneous subpopulations can be mechanistically identified. The large scale PBPK model separates physiological and drug-specific knowledge which allows, in combination with Bayesian approaches, the iterative assessment of specific populations by integrating information from several drugs.


PLOS ONE | 2015

Bayesian Population Physiologically-Based Pharmacokinetic (PBPK) Approach for a Physiologically Realistic Characterization of Interindividual Variability in Clinically Relevant Populations

Markus Krauss; Kai Tappe; Andreas Schuppert; Lars Kuepfer; Linus Goerlitz

Interindividual variability in anatomical and physiological properties results in significant differences in drug pharmacokinetics. The consideration of such pharmacokinetic variability supports optimal drug efficacy and safety for each single individual, e.g. by identification of individual-specific dosings. One clear objective in clinical drug development is therefore a thorough characterization of the physiological sources of interindividual variability. In this work, we present a Bayesian population physiologically-based pharmacokinetic (PBPK) approach for the mechanistically and physiologically realistic identification of interindividual variability. The consideration of a generic and highly detailed mechanistic PBPK model structure enables the integration of large amounts of prior physiological knowledge, which is then updated with new experimental data in a Bayesian framework. A covariate model integrates known relationships of physiological parameters to age, gender and body height. We further provide a framework for estimation of the a posteriori parameter dependency structure at the population level. The approach is demonstrated considering a cohort of healthy individuals and theophylline as an application example. The variability and co-variability of physiological parameters are specified within the population; respectively. Significant correlations are identified between population parameters and are applied for individual- and population-specific visual predictive checks of the pharmacokinetic behavior, which leads to improved results compared to present population approaches. In the future, the integration of a generic PBPK model into an hierarchical approach allows for extrapolations to other populations or drugs, while the Bayesian paradigm allows for an iterative application of the approach and thereby a continuous updating of physiological knowledge with new data. This will facilitate decision making e.g. from preclinical to clinical development or extrapolation of PK behavior from healthy to clinically significant populations.


npj Systems Biology and Applications | 2017

Translational learning from clinical studies predicts drug pharmacokinetics across patient populations

Markus Krauss; Ute Hofmann; Clemens Schafmayer; Svitlana Igel; Jan Schlender; Christian Mueller; Mario Brosch; Witigo von Schoenfels; Wiebke Erhart; Andreas Schuppert; Michael Block; Elke Schaeffeler; Gabriele Boehmer; Linus Goerlitz; Jan Hoecker; Joerg Lippert; Reinhold Kerb; Jochen Hampe; Lars Kuepfer; Matthias Schwab

Early indication of late-stage failure of novel candidate drugs could be facilitated by continuous integration, assessment, and transfer of knowledge acquired along pharmaceutical development programs. We here present a translational systems pharmacology workflow that combines drug cocktail probing in a specifically designed clinical study, physiologically based pharmacokinetic modeling, and Bayesian statistics to identify and transfer (patho-)physiological and drug-specific knowledge across distinct patient populations. Our work builds on two clinical investigations, one with 103 healthy volunteers and one with 79 diseased patients from which we systematically derived physiological information from pharmacokinetic data for a reference probe drug (midazolam) at the single-patient level. Taking into account the acquired knowledge describing (patho-)physiological alterations in the patient cohort allowed the successful prediction of the population pharmacokinetics of a second, candidate probe drug (torsemide) in the patient population. In addition, we identified significant relations of the acquired physiological processes to patient metadata from liver biopsies. The presented prototypical systems pharmacology approach is a proof of concept for model-based translation across different stages of pharmaceutical development programs. Applied consistently, it has the potential to systematically improve predictivity of pharmacokinetic simulations by incorporating the results of clinical trials and translating them to subsequent studies.Systems pharmacology: predicting population pharmacokinetics in silicoPhysiologically based modeling together with Bayesian statistics allows the prediction of drug pharmacokinetics in specific patient populations. An interdisciplinary group of clinicians and computational scientists led by Dr. Lars Kuepfer from Bayer developed a generic workflow consisting of several consecutive learning steps where knowledge about both individual physiology as well as drug physicochemistry can be efficiently derived from plasma concentration profiles. The acquired information is then be used for the prediction of the pharmacokinetic behavior of a new drug candidate in a diseased population. This allows to simulate the variability in drug exposure virtually before starting clinical investigation in real patients in order to evaluate drug safety or efficacy through the simulation of virtual populations. Further development of this workflow could improve the safety of clinical development programs to assess the risk-benefit ratio of novel drug candidates in silico.


international conference of the ieee engineering in medicine and biology society | 2016

A multiscale, model-based analysis of the multi-tissue interplay underlying blood glucose regulation in type I diabetes

Federico Wadehn; Stephan Schaller; Thomas Eissing; Markus Krauss; Lars Kupfer

A multiscale model for blood glucose regulation in diabetes type I patients is constructed by integrating detailed metabolic network models for fat, liver and muscle cells into a whole body physiologically-based pharmacokinetic/pharmacodynamic (pBPK/PD) model. The blood glucose regulation PBPK/PD model simulates the distribution and metabolization of glucose, insulin and glucagon on an organ and whole body level. The genome-scale metabolic networks in contrast describe intracellular reactions. The developed multiscale model is fitted to insulin, glucagon and glucose measurements of a 48h clinical trial featuring 6 subjects and is subsequently used to simulate (in silico) the influence of geneknockouts and drug-induced enzyme inhibitions on whole body blood glucose levels. Simulations of diabetes associated gene knockouts and impaired cellular glucose metabolism, resulted in elevated whole body blood-glucose levels, but also in a metabolic shift within the cells reaction network. Such multiscale models have the potential to be employed in the exploration of novel drug-targets or to be integrated into control algorithms for artificial pancreas systems.


Clinical Pharmacokinectics | 2016

Development of a Whole-Body Physiologically Based Pharmacokinetic Approach to Assess the Pharmacokinetics of Drugs in Elderly Individuals.

Jan-Frederik Schlender; Michaela Meyer; Kirstin Thelen; Markus Krauss; Stefan Willmann; Thomas Eissing; Ulrich Jaehde


Drug Discovery Today: Disease Models | 2016

Assessing interindividual variability by Bayesian-PBPK modeling

Markus Krauss; Andreas Schuppert


PLOS Computational Biology | 2014

Conceptual model overview.

Lars Ole Schwen; Markus Krauss; Christoph Niederalt; Felix Gremse; Fabian Kiessling; Andrea Schenk; Tobias Preusser; Lars Kuepfer

Collaboration


Dive into the Markus Krauss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge