Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Reinhardt is active.

Publication


Featured researches published by Christoph Reinhardt.


Nature Nanotechnology | 2013

Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology

Stefan Tenzer; Dominic Docter; Jörg Kuharev; Anna Musyanovych; Verena Fetz; Rouven Hecht; Florian Schlenk; Dagmar Fischer; Klytaimnistra Kiouptsi; Christoph Reinhardt; Katharina Landfester; Hansjörg Schild; Michael Maskos; Shirley K. Knauer; Roland H. Stauber

In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.


Nature Medicine | 2010

Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases

Steffen Massberg; Lenka Grahl; Marie-Luise von Bruehl; Davit Manukyan; Susanne Pfeiler; Christian Goosmann; Volker Brinkmann; Michael Lorenz; Kiril Bidzhekov; Avinash Khandagale; Ildiko Konrad; Elisabeth Kennerknecht; Katja Reges; Stefan Holdenrieder; Siegmund Braun; Christoph Reinhardt; Michael Spannagl; Klaus T. Preissner; Bernd Engelmann

Blood neutrophils provide the first line of defense against pathogens but have also been implicated in thrombotic processes. This dual function of neutrophils could reflect an evolutionarily conserved association between blood coagulation and antimicrobial defense, although the molecular determinants and in vivo significance of this association remain unclear. Here we show that major microbicidal effectors of neutrophils, the serine proteases neutrophil elastase and cathepsin G, together with externalized nucleosomes, promote coagulation and intravascular thrombus growth in vivo. The serine proteases and extracellular nucleosomes enhance tissue factor– and factor XII–dependent coagulation in a process involving local proteolysis of the coagulation suppressor tissue factor pathway inhibitor. During systemic infection, activation of coagulation fosters compartmentalization of bacteria in liver microvessels and reduces bacterial invasion into tissue. In the absence of a pathogen challenge, neutrophil-derived serine proteases and nucleosomes can contribute to large-vessel thrombosis, the main trigger of myocardial infarction and stroke. The ability of coagulation to suppress pathogen dissemination indicates that microvessel thrombosis represents a physiological tool of host defense.


Journal of Clinical Investigation | 2008

Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation

Christoph Reinhardt; Marie Luise Von Brühl; Davit Manukyan; Lenka Grahl; Michael Lorenz; Berid Altmann; Silke Dlugai; Sonja Hess; Ildiko Konrad; Lena Orschiedt; Nigel Mackman; Lloyd Ruddock; Steffen Massberg; Bernd Engelmann

The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets and disrupted vessel wall cells. Inhibition of PDI decreased TF-triggered fibrin formation in different in vivo murine models of thrombus formation, as determined by intravital fluorescence microscopy. PDI infusion increased - and, under conditions of decreased platelet adhesion, PDI inhibition reduced - fibrin generation at the injury site, indicating that PDI can directly initiate blood coagulation. In vitro, human platelet-secreted PDI contributed to the activation of cryptic TF on microvesicles (microparticles). Mass spectrometry analyses indicated that part of the extracellular cysteine 209 of TF was constitutively glutathionylated. Mixed disulfide formation contributed to maintaining TF in a state of low functionality. We propose that reduced PDI activates TF by isomerization of a mixed disulfide and a free thiol to an intramolecular disulfide. Our findings suggest that disulfide isomerases can act as injury response signals that trigger the activation of fibrin formation following vessel injury.


Gut | 2012

Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice

Robert Caesar; Christopher S. Reigstad; Helene Kling Bäckhed; Christoph Reinhardt; Maria Ketonen; Gunnel Östergren Lundén; Patrice D. Cani; Fredrik Bäckhed

Background Obesity is associated with accumulation of macrophages in white adipose tissue (WAT), which contribute to the development of insulin resistance. Germ-free (GF) mice have reduced adiposity and are protected against diet-induced obesity, Objective To investigate whether the gut microbiota and, specifically, gut-derived lipopolysaccharide (LPS) promote WAT inflammation and contribute to impaired glucose metabolism. Method Macrophage composition and expression of proinflammatory and anti-inflammatory markers were compared in WAT of GF, conventionally raised and Escherichia coli-monocolonised mice. Additionally, glucose and insulin tolerance in these mice was determined. Results The presence of a gut microbiota resulted in impaired glucose metabolism and increased macrophage accumulation and polarisation towards the proinflammatory M1 phenotype in WAT. Monocolonisation of GF mice for 4 weeks with E.coli W3110 or the isogenic strain MLK1067 (which expresses LPS with reduced immunogenicity) resulted in impaired glucose and insulin tolerance and promoted M1 polarisation of CD11b cells in WAT. However, colonisation with E.coli W3110 but not MLK1067 promoted macrophage accumulation and upregulation of proinflammatory and anti-inflammatory gene expression as well as JNK phosphorylation. Conclusion Gut microbiota induced LPS-dependent macrophage accumulation in WAT, whereas impairment of systemic glucose metabolism was not dependent on LPS. These results indicate that macrophage accumulation in WAT does not always correlate with impaired glucose metabolism.


Nature | 2012

Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling

Christoph Reinhardt; Mattias Bergentall; Thomas U. Greiner; Florence Schaffner; Gunnel Östergren-Lundén; Lars C. Petersen; Wolfram Ruf; Fredrik Bäckhed

The gut microbiota is a complex ecosystem that has coevolved with host physiology. Colonization of germ-free (GF) mice with a microbiota promotes increased vessel density in the small intestine, but little is known about the mechanisms involved. Tissue factor (TF) is the membrane receptor that initiates the extrinsic coagulation pathway, and it promotes developmental and tumour angiogenesis. Here we show that the gut microbiota promotes TF glycosylation associated with localization of TF on the cell surface, the activation of coagulation proteases, and phosphorylation of the TF cytoplasmic domain in the small intestine. Anti-TF treatment of colonized GF mice decreased microbiota-induced vascular remodelling and expression of the proangiogenic factor angiopoietin-1 (Ang-1) in the small intestine. Mice with a genetic deletion of the TF cytoplasmic domain or with hypomorphic TF (F3) alleles had a decreased intestinal vessel density. Coagulation proteases downstream of TF activate protease-activated receptor (PAR) signalling implicated in angiogenesis. Vessel density and phosphorylation of the cytoplasmic domain of TF were decreased in small intestine from PAR1-deficient (F2r−/−) but not PAR2-deficient (F2rl1−/−) mice, and inhibition of thrombin showed that thrombin–PAR1 signalling was upstream of TF phosphorylation. Thus, the microbiota-induced extravascular TF–PAR1 signalling loop is a novel pathway that may be modulated to influence vascular remodelling in the small intestine.


Journal of the American Heart Association | 2016

Gut Microbiota Promote Angiotensin II–Induced Arterial Hypertension and Vascular Dysfunction

Susanne Karbach; Tanja Schönfelder; Inês Brandão; Eivor Wilms; Nives Hörmann; Sven Jäckel; Rebecca Schüler; Stefanie Finger; Maike Knorr; Jérémy Lagrange; Moritz Brandt; Ari Waisman; Sabine Kossmann; Katrin Schäfer; Thomas Münzel; Christoph Reinhardt; Philip Wenzel

Background The gut microbiome is essential for physiological host responses and development of immune functions. The impact of gut microbiota on blood pressure and systemic vascular function, processes that are determined by immune cell function, is unknown. Methods and Results Unchallenged germ‐free mice (GF) had a dampened systemic T helper cell type 1 skewing compared to conventionally raised (CONV‐R) mice. Colonization of GF mice with regular gut microbiota induced lymphoid mRNA transcription of T‐box expression in T cells and resulted in mild endothelial dysfunction. Compared to CONV‐R mice, angiotensin II (AngII; 1 mg/kg per day for 7 days) infused GF mice showed reduced reactive oxygen species formation in the vasculature, attenuated vascular mRNA expression of monocyte chemoattractant protein 1 (MCP‐1), inducible nitric oxide synthase (iNOS) and NADPH oxidase subunit Nox2, as well as a reduced upregulation of retinoic‐acid receptor‐related orphan receptor gamma t (Rorγt), the signature transcription factor for interleukin (IL)‐17 synthesis. This resulted in an attenuated vascular leukocyte adhesion, less infiltration of Ly6G+ neutrophils and Ly6C+ monocytes into the aortic vessel wall, protection from kidney inflammation, as well as endothelial dysfunction and attenuation of blood pressure increase in response to AngII. Importantly, cardiac inflammation, fibrosis and systolic dysfunction were attenuated in GF mice, indicating systemic protection from cardiovascular inflammatory stress induced by AngII. Conclusion Gut microbiota facilitate AngII‐induced vascular dysfunction and hypertension, at least in part, by supporting an MCP‐1/IL‐17 driven vascular immune cell infiltration and inflammation.


Journal of Thrombosis and Haemostasis | 2016

Cofactor Independent Human Antiphospholipid Antibodies Induce Venous Thrombosis in Mice

Davit Manukyan; Nadine Müller-Calleja; Sven Jäckel; Katja Luchmann; René Mönnikes; Klytaimnistra Kiouptsi; Christoph Reinhardt; Kerstin Jurk; Ulrich Walter; Karl J. Lackner

Essentials Cofactor‐independent antiphospholipid antibodies (CI‐aPL) are generally considered non‐pathogenic. We analyzed the effects of human monoclonal CI‐aPL in a mouse model of venous thrombosis. As shown in vitro, CI‐aPL induce a procoagulant state in vivo by activation of endosomal NADPH‐oxidase. Contrary to common belief, CI‐aPL induce venous thrombosis in vivo.


Science Translational Medicine | 2017

Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension

Sabine Kossmann; Jeremy Lagrange; Sven Jäckel; Kerstin Jurk; Moritz Ehlken; Tanja Schönfelder; Yvonne Weihert; Maike Knorr; Moritz Brandt; Ning Xia; Huige Li; Andreas Daiber; Matthias Oelze; Christoph Reinhardt; Karl J. Lackner; Andras Gruber; Brett P. Monia; Susanne Karbach; Ulrich Walter; Zaverio M. Ruggeri; Thomas Renné; Wolfram Ruf; Thomas Münzel; Philip Wenzel

Blockade of an inflammatory, thrombin-activated feedback loop on platelets controls high blood pressure. Spotlight on factor XI Hypertension, cardiovascular disease, and vascular inflammation are inextricably linked, often co-occurring. Kossmann et al. have now discovered a regulatory pathway linking these pathologies that could be inhibited to allow the control of treatment-resistant high blood pressure. In rats and mice with hypertension, the authors found that vascular disease is driven by an overactive thrombin-driven factor XI feedback loop on platelets. Inhibition of this feedback loop with an antisense molecule against factor XI reduced both the vascular pathology and hypertension. The authors show that this factor XI–dependent feedback loop also operates in patients with uncontrolled hypertension, raising the possibility that factor XI inhibition may prove a useful addition to our armamentarium for treating high blood pressure. Multicellular interactions of platelets, leukocytes, and the blood vessel wall support coagulation and precipitate arterial and venous thrombosis. High levels of angiotensin II cause arterial hypertension by a complex vascular inflammatory pathway that requires leukocyte recruitment and reactive oxygen species production and is followed by vascular dysfunction. We delineate a previously undescribed, proinflammatory coagulation-vascular circuit that is a major regulator of vascular tone, blood pressure, and endothelial function. In mice with angiotensin II–induced hypertension, tissue factor was up-regulated, as was thrombin-dependent endothelial cell vascular cellular adhesion molecule 1 expression and integrin αMβ2– and platelet-dependent leukocyte adhesion to arterial vessels. The resulting vascular inflammation and dysfunction was mediated by activation of thrombin-driven factor XI (FXI) feedback, independent of factor XII. The FXI receptor glycoprotein Ibα on platelets was required for this thrombin feedback activation in angiotensin II–infused mice. Inhibition of FXI synthesis with an antisense oligonucleotide was sufficient to prevent thrombin propagation on platelets, vascular leukocyte infiltration, angiotensin II–induced endothelial dysfunction, and arterial hypertension in mice and rats. Antisense oligonucleotide against FXI also reduced the increased blood pressure and attenuated vascular and kidney dysfunction in rats with established arterial hypertension. Further, platelet-localized thrombin generation was amplified in an FXI-dependent manner in patients with uncontrolled arterial hypertension, suggesting that platelet-localized thrombin generation may serve as an inflammatory marker of high blood pressure. Our results outline a coagulation-inflammation circuit that promotes vascular dysfunction, and highlight the possible utility of FXI-targeted anticoagulants in treating hypertension, beyond their application as antithrombotic agents in cardiovascular disease.


Blood | 2017

Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development

Saravanan Subramaniam; Kerstin Jurk; Lukas Hobohm; Sven Jäckel; Mona Saffarzadeh; Kathrin Schwierczek; Philip Wenzel; Florian Länger; Christoph Reinhardt; Wolfram Ruf

Expanding evidence indicates multiple interactions between the hemostatic system and innate immunity, and the coagulation and complement cascades. Here we show in a tissue factor (TF)-dependent model of flow restriction-induced venous thrombosis that complement factors make distinct contributions to platelet activation and fibrin deposition. Complement factor 3 (C3) deficiency causes prolonged bleeding, reduced thrombus incidence, thrombus size, fibrin and platelet deposition in the ligated inferior vena cava, and diminished platelet activation in vitro. Initial fibrin deposition at the vessel wall over 6 hours in this model was dependent on protein disulfide isomerase (PDI) and TF expression by myeloid cells, but did not require neutrophil extracellular trap formation involving peptidyl arginine deiminase 4. In contrast to C3-/- mice, C5-deficient mice had no apparent defect in platelet activation in vitro, and vessel wall platelet deposition and initial hemostasis in vivo. However, fibrin formation, the exposure of negatively charged phosphatidylserine (PS) on adherent leukocytes, and clot burden after 48 hours were significantly reduced in C5-/- mice compared with wild-type controls. These results delineate that C3 plays specific roles in platelet activation independent of formation of the terminal complement complex and provide in vivo evidence for contributions of complement-dependent membrane perturbations to prothrombotic TF activation on myeloid cells.


PLOS ONE | 2014

Gut Microbial Colonization Orchestrates TLR2 Expression, Signaling and Epithelial Proliferation in the Small Intestinal Mucosa

Nives Hörmann; Inês Brandão; Sven Jäckel; Nelli Ens; Maren Lillich; Ulrich Walter; Christoph Reinhardt

The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs). Here, we report that colonization of germ-free (GF) Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2) and protein-kinase B (AKT) induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R) showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area.

Collaboration


Dive into the Christoph Reinhardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfram Ruf

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saravanan Subramaniam

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge