Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Wenzel is active.

Publication


Featured researches published by Philip Wenzel.


Antioxidants & Redox Signaling | 2008

Nitric Oxide, Tetrahydrobiopterin, Oxidative Stress, and Endothelial Dysfunction in Hypertension

Eberhard Schulz; Thomas Jansen; Philip Wenzel; Andreas Daiber; Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors such as hypercholesterolemia, diabetes mellitus, chronic smoking, as well hypertension, is, at least in part, dependent of the production of reactive oxygen species (ROS) and the subsequent decrease in vascular bioavailability of nitric oxide (NO). ROS-producing enzymes involved in increased oxidative stress within vascular tissue include NADPH oxidase, xanthine oxidase, and mitochondrial superoxide producing enzymes. Superoxide produced by the NADPH oxidase may react with NO, thereby stimulating the production of the NO/superoxide reaction product peroxynitrite. Peroxynitrite in turn has been shown to uncouple eNOS, therefore switching an antiatherosclerotic NO producing enzyme to an enzyme that may accelerate the atherosclerotic process by producing superoxide. Increased oxidative stress in the vasculature, however, is not restricted to the endothelium and also occurs within the smooth muscle cell layer. Increased superoxide production has important consequences with respect to signaling by the soluble guanylate cyclase and the cGMP-dependent kinase I, which activity and expression is regulated in a redox-sensitive fashion. The present review will summarize current concepts concerning eNOS uncoupling, with special focus on the role of tetrahydrobiopterin in mediating eNOS uncoupling.


Circulation | 2011

Lysozyme M–Positive Monocytes Mediate Angiotensin II–Induced Arterial Hypertension and Vascular Dysfunction

Philip Wenzel; Maike Knorr; Sabine Kossmann; Jan Stratmann; Michael Hausding; Swenja Schuhmacher; Susanne Karbach; Melanie Schwenk; Nir Yogev; Eberhard Schulz; Matthias Oelze; Stephan Grabbe; Helmut Jonuleit; Christian Becker; Andreas Daiber; Ari Waisman; Thomas Münzel

Background— Angiotensin II (ATII), a potent vasoconstrictor, causes hypertension, promotes infiltration of myelomonocytic cells into the vessel wall, and stimulates both vascular and inflammatory cell NADPH oxidases. The predominant source of reactive oxygen species, eg, vascular (endothelial, smooth muscle, adventitial) versus phagocytic NADPH oxidase, and the role of myelomonocytic cells in mediating arterial hypertension have not been defined yet. Methods and Results— Angiotensin II (1 mg · kg−1 · d−1 for 7 days) increased the number of both CD11b+Gr-1lowF4/80+ macrophages and CD11b+Gr-1highF4/80− neutrophils in mouse aorta (verified by flow cytometry). Selective ablation of lysozyme M-positive (LysM+) myelomonocytic cells by low-dose diphtheria toxin in mice with inducible expression of the diphtheria toxin receptor (LysMiDTR mice) reduced the number of monocytes in the circulation and limited ATII-induced infiltration of these cells into the vascular wall, whereas the number of neutrophils was not reduced. Depletion of LysM+ cells attenuated ATII-induced blood pressure increase (measured by radiotelemetry) and vascular endothelial and smooth muscle dysfunction (assessed by aortic ring relaxation studies) and reduced vascular superoxide formation (measured by chemiluminescence, cytochrome c assay, and oxidative fluorescence microtopography) and the expression of NADPH oxidase subunits gp91phox and p67phox (assessed by Western blot and mRNA reverse-transcription polymerase chain reaction). Adoptive transfer of wild-type CD11b+Gr-1+ monocytes into depleted LysMiDTR mice reestablished ATII-induced vascular dysfunction, oxidative stress, and arterial hypertension, whereas transfer of CD11b+Gr-1+ neutrophils or monocytes from gp91phox or ATII receptor type 1 knockout mice did not. Conclusions— Infiltrating monocytes with a proinflammatory phenotype and macrophages rather than neutrophils appear to be essential for ATII-induced vascular dysfunction and arterial hypertension.


Hypertension | 2006

Nebivolol Inhibits Superoxide Formation by NADPH Oxidase and Endothelial Dysfunction in Angiotensin II–Treated Rats

Matthias Oelze; Andreas Daiber; Ralf P. Brandes; Marcus Hortmann; Philip Wenzel; Ulrich Hink; Eberhard Schulz; Hanke Mollnau; Alexandra von Sandersleben; Andrei L. Kleschyov; Alexander Mülsch; Huige Li; Ulrich Förstermann; Thomas Münzel

Nebivolol is a &bgr;1-receptor antagonist with vasodilator and antioxidant properties. Because the vascular NADPH oxidase is an important superoxide source, we studied the effect of nebivolol on endothelial function and NADPH oxidase activity and expression in the well-characterized model of angiotensin II–induced hypertension. Angiotensin II infusion (1 mg/kg per day for 7 days) caused endothelial dysfunction in male Wistar rats and increased vascular superoxide as detected by lucigenin-derived chemiluminescence, as well as dihydroethidine staining. Vascular NADPH oxidase activity, as well as expression at the mRNA and protein level, were markedly upregulated, as well as NOS III uncoupled, as evidenced by NO synthase III inhibitor experiments and dihydroethidine staining and by markedly decreased hemoglobin–NO concentrations. Treatment with the &bgr;-receptor blocker nebivolol but not metoprolol (10 mg/kg per day for each drug) normalized endothelial function, reduced superoxide formation, increased NO bioavailability, and inhibited upregulation of the activity and expression of the vascular NADPH oxidase, as well as membrane association of NADPH oxidase subunits (Rac1 and p67phox). In addition, NOS III uncoupling was prevented. In vitro treatment with nebivolol but not atenolol or metoprolol induced a dissociation of p67phox and Rac1, as well as an inhibition of NADPH oxidase activity assessed in heart membranes from angiotensin II–infused animals, as well as in homogenates of Nox1 and cytosolic subunit–transfected and phorbol ester–stimulated HEK293 cells. These findings indicate that nebivolol interferes with the assembly of NADPH oxidase. Thus, inhibitory effects of this &bgr;-blocker on vascular NADPH oxidase may explain, at least in part, its beneficial effect on endothelial function in angiotensin II–induced hypertension.


Cardiovascular Research | 2008

Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction

Philip Wenzel; Swenja Schuhmacher; Joachim Kienhöfer; Johanna Müller; Marcus Hortmann; Matthias Oelze; Eberhard Schulz; Nicolai Treiber; Toshihiro Kawamoto; Karin Scharffetter-Kochanek; Thomas Münzel; Alexander Bürkle; Markus Bachschmid; Andreas Daiber

AIMS Imbalance between pro- and antioxidant species (e.g. during aging) plays a crucial role for vascular function and is associated with oxidative gene regulation and modification. Vascular aging is associated with progressive deterioration of vascular homeostasis leading to reduced relaxation, hypertrophy, and a higher risk of thrombotic events. These effects can be explained by a reduction in free bioavailable nitric oxide that is inactivated by an age-dependent increase in superoxide formation. In the present study, mitochondria as a source of reactive oxygen species (ROS) and the contribution of manganese superoxide dismutase (MnSOD, SOD-2) and aldehyde dehydrogenase (ALDH-2) were investigated. METHODS AND RESULTS Age-dependent effects on vascular function were determined in aortas of C57/Bl6 wild-type (WT), ALDH-2(-/-), MnSOD(+/+), and MnSOD(+/-) mice by isometric tension measurements in organ chambers. Mitochondrial ROS formation was measured by luminol (L-012)-enhanced chemiluminescence and 2-hydroxyethidium formation with an HPLC-based assay in isolated heart mitochondria. ROS-mediated mitochondrial DNA (mtDNA) damage was detected by a novel and modified version of the fluorescent-detection alkaline DNA unwinding (FADU) assay. Endothelial dysfunction was observed in aged C57/Bl6 WT mice in parallel to increased mitochondrial ROS formation and oxidative mtDNA damage. In contrast, middle-aged ALDH-2(-/-) mice showed a marked vascular dysfunction that was similar in old ALDH-2(-/-) mice suggesting that ALDH-2 exerts age-dependent vasoprotective effects. Aged MnSOD(+/-) mice showed the most pronounced phenotype such as severely impaired vasorelaxation, highest levels of mitochondrial ROS formation and mtDNA damage. CONCLUSION The correlation between mtROS formation and acetylcholine-dependent relaxation revealed that mitochondrial radical formation significantly contributes to age-dependent endothelial dysfunction.


Journal of Biological Chemistry | 2007

Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity : Implications for mitochondrial oxidative stress and nitrate tolerance

Philip Wenzel; Ulrich Hink; Matthias Oelze; Swaantje Schuppan; Karin Schaeuble; Stefan Schildknecht; Kwok Ki Ho; Henry Weiner; Markus Bachschmid; Thomas Münzel; Andreas Daiber

Chronic therapy with nitroglycerin results in a rapid development of nitrate tolerance, which is associated with an increased production of reactive oxygen species. We have recently shown that mitochondria are an important source of nitroglycerin-induced oxidants and that the nitroglycerin-bioactivating mitochondrial aldehyde dehydrogenase is oxidatively inactivated in the setting of tolerance. Here we investigated the effect of various oxidants on aldehyde dehydrogenase activity and its restoration by dihydrolipoic acid. In vivo tolerance in Wistar rats was induced by infusion of nitroglycerin (6.6 μg/kg/min, 4 days). Vascular reactivity was measured by isometric tension studies of isolated aortic rings in response to nitroglycerin. Chronic nitroglycerin infusion lead to impaired vascular responses to nitroglycerin and decreased dehydrogenase activity, which was corrected by dihydrolipoic acid co-incubation. Superoxide, peroxynitrite, and nitroglycerin itself were highly efficient in inhibiting mitochondrial and yeast aldehyde dehydrogenase activity, which was restored by dithiol compounds such as dihydrolipoic acid and dithiothreitol. Hydrogen peroxide and nitric oxide were rather insensitive inhibitors. Our observations indicate that mitochondrial oxidative stress (especially superoxide and peroxynitrite) in response to organic nitrate treatment may inactivate aldehyde dehydrogenase thereby leading to nitrate tolerance. Glutathionylation obviously amplifies oxidative inactivation of the enzyme providing another regulatory pathway. Furthermore, the present data demonstrate that the mitochondrial dithiol compound dihydrolipoic acid restores mitochondrial aldehyde dehydrogenase activity via reduction of a disulfide at the active site and thereby improves nitrate tolerance.


Cardiovascular Research | 2012

Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition

Swenja Kröller-Schön; Maike Knorr; Michael Hausding; Matthias Oelze; Alexandra Schuff; Richard Schell; Stephan Sudowe; Alexander Scholz; Steffen Daub; Susanne Karbach; Sabine Kossmann; Tommaso Gori; Philip Wenzel; Eberhard Schulz; Stephan Grabbe; Thomas Klein; Thomas Münzel; Andreas Daiber

AIMS Dipeptidyl peptidase-4 (DPP-4) inhibitors are a novel class of drugs for the treatment of hyperglycaemia. Preliminary evidence suggests that their antioxidant and anti-inflammatory effects may have beneficial effects on the cardiovascular complications of diabetes. In the present study, we investigate in an experimental sepsis model whether linagliptin exerts pleiotropic vascular effects independent of its glucose-lowering properties. METHODS AND RESULTS Linagliptin (83 mg/kg chow for 7 days) was administered in a rat model of lipopolysaccharide (LPS) (10 mg/kg, single i.p. dose/24 h)-induced sepsis. Vascular relaxation, reactive oxygen species (ROS) formation, expression of NADPH oxidase subunits and proinflammatory markers, and white blood cell infiltration in the vasculature were determined. Oxidative burst and adhesion of isolated human neutrophils to endothelial cells were measured in the presence of different DPP-4 inhibitors, and their direct vasodilatory effects (isometric tension in isolated aortic rings) were compared. In vivo linagliptin treatment ameliorated LPS-induced endothelial dysfunction and was associated with reduced formation of vascular, cardiac, and blood ROS, aortic expression of inflammatory genes and NADPH oxidase subunits in addition to reduced aortic infiltration with inflammatory cells. Linagliptin was the most potent inhibitor of oxidative burst in isolated activated human neutrophils and it suppressed their adhesion to activated endothelial cells. Of the inhibitors tested, linagliptin and alogliptin had the most pronounced direct vasodilatory potency. CONCLUSION Linagliptin demonstrated pleiotropic vasodilatory, antioxidant, and anti-inflammatory properties independent of its glucose-lowering properties. These pleiotropic properties are generally not shared by other DPP-4 inhibitors and might translate into cardiovascular benefits in diabetic patients.


Antioxidants & Redox Signaling | 2008

First Evidence for a Crosstalk Between Mitochondrial and NADPH Oxidase-Derived Reactive Oxygen Species in Nitroglycerin-Triggered Vascular Dysfunction

Philip Wenzel; Hanke Mollnau; Matthias Oelze; Eberhard Schulz; Jennifer M. Dias Wickramanayake; Johanna Müller; Swenja Schuhmacher; Marcus Hortmann; Stephan Baldus; Tommaso Gori; Ralf P. Brandes; Thomas Münzel; Andreas Daiber

Chronic nitroglycerin treatment results in development of nitrate tolerance associated with endothelial dysfunction (ED). We sought to clarify how mitochondria- and NADPH oxidase (Nox)-derived reactive oxygen species (ROS) contribute to nitrate tolerance and nitroglycerin-induced ED. Nitrate tolerance was induced by nitroglycerin infusion in male Wistar rats (100 microg/h/4 day) and in C57/Bl6, p47(phox/) and gp91(phox/) mice (50 microg/h/4 day). Protein and mRNA expression of Nox subunits were unaltered by chronic nitroglycerin treatment. Oxidative stress was determined in vascular rings and mitochondrial fractions of nitroglycerin-treated animals by L-012 enhanced chemiluminescence, revealing a dominant role of mitochondria for nitrate tolerance development. Isometric tension studies revealed that genetic deletion or inhibition (apocynin, 0.35 mg/h/4 day) of Nox improved ED, whereas nitrate tolerance was unaltered. Vice versa, nitrate tolerance was attenuated by co-treatment with the respiratory chain complex I inhibitor rotenone (100 microg/h/4 day) or the mitochondrial permeability transition pore blocker cyclosporine A (50 microg/h/4 day). Both compounds improved ED, suggesting a link between mitochondrial and Nox-derived ROS. Mitochondrial respiratory chain-derived ROS are critical for the development of nitrate tolerance, whereas Nox-derived ROS mediate nitrate tolerance-associated ED. This suggests a crosstalk between mitochondrial and Nox-derived ROS with distinct mechanistic effects and sites for pharmacological intervention.


Circulation | 2008

Suppression of the JNK Pathway by Induction of a Metabolic Stress Response Prevents Vascular Injury and Dysfunction

Eberhard Schulz; Jörn F. Dopheide; Swenja Schuhmacher; Shane R. Thomas; Kai Chen; Andreas Daiber; Philip Wenzel; Thomas Münzel; John F. Keaney

Background— Oxidative injury and dysfunction of the vascular endothelium are early and causal features of many vascular diseases. Single antioxidant strategies to prevent vascular injury have met with mixed results. Methods and Results— Here, we report that induction of a metabolic stress response with adenosine monophosphate kinase (AMPK) prevents oxidative endothelial cell injury. This response is characterized by stabilization of the mitochondrion and increased mitochondrial biogenesis, resulting in attenuation of oxidative c-Jun N-terminal kinase (JNK) activation. We report that peroxisome proliferator coactivator 1&agr; is a key downstream target of AMPK that is both necessary and sufficient for the metabolic stress response and JNK attenuation. Moreover, induction of the metabolic stress response in vivo attenuates reactive oxygen species–mediated JNK activation and endothelial dysfunction in response to angiotensin II in wild-type mice but not in animals lacking either the endothelial isoform of AMPK or peroxisome proliferator coactivator 1&agr;. Conclusion— These data highlight AMPK and peroxisome proliferator coactivator 1&agr; as potential therapeutic targets for the amelioration of endothelial dysfunction and, as a consequence, vascular disease.


Antioxidants & Redox Signaling | 2014

Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Animal Models

Swenja Kröller-Schön; Sebastian Steven; Sabine Kossmann; Alexander Scholz; Steffen Daub; Matthias Oelze; Ning Xia; Michael Hausding; Yuliya Mikhed; Elena Zinßius; Michael Mader; Paul Stamm; Nicolai Treiber; Karin Scharffetter-Kochanek; Huige Li; Eberhard Schulz; Philip Wenzel; Thomas Münzel; Andreas Daiber

AIMS Oxidative stress is involved in the development of cardiovascular disease. There is a growing body of evidence for a crosstalk between different enzymatic sources of oxidative stress. With the present study, we sought to determine the underlying crosstalk mechanisms, the role of the mitochondrial permeability transition pore (mPTP), and its link to endothelial dysfunction. RESULTS NADPH oxidase (Nox) activation (oxidative burst and translocation of cytosolic Nox subunits) was observed in response to mitochondrial reactive oxygen species (mtROS) formation in human leukocytes. In vitro, mtROS-induced Nox activation was prevented by inhibitors of the mPTP, protein kinase C, tyrosine kinase cSrc, Nox itself, or an intracellular calcium chelator and was absent in leukocytes with p47phox deficiency (regulates Nox2) or with cyclophilin D deficiency (regulates mPTP). In contrast, the crosstalk in leukocytes was amplified by mitochondrial superoxide dismutase (type 2) (MnSOD(+/-)) deficiency. In vivo, increases in blood pressure, degree of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) dysregulation/uncoupling (e.g., eNOS S-glutathionylation) or Nox activity, p47phox phosphorylation in response to angiotensin-II (AT-II) in vivo treatment, or the aging process were more pronounced in MnSOD(+/-) mice as compared with untreated controls and improved by mPTP inhibition by cyclophilin D deficiency or sanglifehrin A therapy. INNOVATION These results provide new mechanistic insights into what extent mtROS trigger Nox activation in phagocytes and cardiovascular tissue, leading to endothelial dysfunction. CONCLUSIONS Our data show that mtROS trigger the activation of phagocytic and cardiovascular NADPH oxidases, which may have fundamental implications for immune cell activation and development of AT-II-induced hypertension.


Clinical Research in Cardiology | 2008

New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance

Andreas Daiber; Philip Wenzel; Matthias Oelze; Thomas Münzel

Organic nitrates still represent a group of very effective anti-ischemic drugs used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. Long-term therapy with organic nitrates, however, results in a rapid development of nitrate tolerance blunting their hemodynamic and antiischemic efficacy. Recent studies revealed that mitochondrial reactive oxygen species (ROS) formation and a subsequent oxidative inactivation of nitrate reductase, the mitochondrial aldehyde dehydrogenase (ALDH-2), play an important role for the development of nitrate and crosstolerance. The present review focuses firstly on the role of ALDH-2 for organic nitrate bioactivation and secondly on the role of oxidative stress in the development of tolerance and cross-tolerance (endothelial dysfunction) in response to various organic nitrates. Finally, we would like to draw the reader’s attention to the protective properties of the organic nitrate pentaerithrityl tetranitrate (PETN), which, in contrast to all other organic nitrates, is able to upregulate enzymes with a strong antioxidative capacity thereby preventing tolerance and the development of endothelial dysfunction.

Collaboration


Dive into the Philip Wenzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge