Christoph Schell
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Schell.
Nature Reviews Nephrology | 2013
Florian Grahammer; Christoph Schell; Tobias B. Huber
The architectural design of our kidneys is amazingly complex, and culminates in the 3D structure of the glomerular filter. During filtration, plasma passes through a sieve consisting of a fenestrated endothelium and a broad basement membrane before it reaches the most unique part, the slit diaphragm, a specialized type of intercellular junction that connects neighbouring podocyte foot processes. When podocytes become stressed, irrespective of the causative stimulus, they undergo foot process effacement and loss of slit diaphragms—two key steps leading to proteinuria. Thus, proteinuria is the unifying denominator of a broad spectrum of podocytopathies. With the rising prevalence of chronic kidney disease and the fact that glomerular diseases account for the majority of patients with end-stage renal disease, further investigation and elucidation of this unique structure is of paramount importance. This Review recounts how perception of the slit diaphragm has changed over time as a result of intense research, from its first anatomical description as a thin intercellular connection, to an appreciation of its role as a dynamic signalling hub. These observations led to the introduction of novel concepts in podocyte biology, which could pave the way to development of highly desired, specific therapeutic strategies for glomerular diseases.
Nature Genetics | 2013
Sylvia Hoff; Jan Halbritter; Daniel Epting; Valeska Frank; Thanh-Minh T. Nguyen; Jeroen van Reeuwijk; Christopher Boehlke; Christoph Schell; Takayuki Yasunaga; Martin Helmstädter; Miriam Mergen; Emilie Filhol; Karsten Boldt; Nicola Horn; Marius Ueffing; Edgar A. Otto; Tobias Eisenberger; Mariet W. Elting; Joanna A.E. van Wijk; Detlef Bockenhauer; Nj Sebire; Søren Rittig; Mogens Vyberg; Troels Ring; Martin Pohl; Lars Pape; Thomas J. Neuhaus; Neveen A. Soliman Elshakhs; Sarah Koon; Peter C. Harris
Nephronophthisis is an autosomal recessive cystic kidney disease that leads to renal failure in childhood or adolescence. Most NPHP gene products form molecular networks. Here we identify ANKS6 as a new NPHP family member that connects NEK8 (NPHP9) to INVS (NPHP2) and NPHP3. We show that ANKS6 localizes to the proximal cilium and confirm its role in renal development through knockdown experiments in zebrafish and Xenopus laevis. We also identify six families with ANKS6 mutations affected by nephronophthisis, including severe cardiovascular abnormalities, liver fibrosis and situs inversus. The oxygen sensor HIF1AN hydroxylates ANKS6 and INVS and alters the composition of the ANKS6-INVS-NPHP3 module. Knockdown of Hif1an in Xenopus results in a phenotype that resembles loss of other NPHP proteins. Network analyses uncovered additional putative NPHP proteins and placed ANKS6 at the center of this NPHP module, explaining the overlapping disease manifestation caused by mutation in ANKS6, NEK8, INVS or NPHP3.
Journal of The American Society of Nephrology | 2013
Wibke Bechtel; Martin Helmstädter; Jan Balica; Björn Hartleben; Betina Kiefer; Fatima Hrnjic; Christoph Schell; Oliver Kretz; Shuya Liu; Felix Geist; Dontscho Kerjaschki; Gerd Walz; Tobias B. Huber
The molecular mechanisms that maintain podocytes and consequently, the integrity of the glomerular filtration barrier are incompletely understood. Here, we show that the class III phosphoinositide 3-kinase vacuolar protein sorting 34 (Vps34) plays a central role in modulating endocytic pathways, maintaining podocyte homeostasis. In mice, podocyte-specific conditional knockout of Vps34 led to early proteinuria, glomerular scarring, and death within 3-9 weeks of age. Vps34-deficient podocytes exhibited substantial vacuolization and foot process effacement. Although the formation of autophagosomes and autophagic flux were impaired, comparisons between podocyte-specific Vps34-deficient mice, autophagy-deficient mice, and doubly deficient mice suggested that defective autophagy was not primarily responsible for the severe phenotype caused by the loss of Vps34. In fact, Rab5-positive endosomal compartments, endocytosis, and fluid-phase uptake were severely disrupted in Vps34-deficient podocytes. Vps34 deficiency in nephrocytes, the podocyte-like cells of Drosophila melanogaster, resulted in a block between Rab5- and Rab7-positive endosomal compartments. In summary, these data identify Vps34 as a major regulator of endolysosomal pathways in podocytes and underline the fundamental roles of endocytosis and fluid-phase uptake for the maintenance of the glomerular filtration barrier.
Journal of The American Society of Nephrology | 2013
Christoph Schell; Lisa Baumhakl; Sarah Salou; Ann-Christin Conzelmann; Charlotte Meyer; Martin Helmstädter; Christoph Wrede; Florian Grahammer; Stefan Eimer; Dontscho Kerjaschki; Gerd Walz; Scott B. Snapper; Tobias B. Huber
Alteration of cortical actin structures is the common final pathway leading to podocyte foot process effacement and proteinuria. The molecular mechanisms that safeguard podocyte foot process architecture and maintain the three-dimensional actin network remain elusive. Here, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP), which promotes actin nucleation, is required to stabilize podocyte foot processes. Mice lacking N-WASP specifically in podocytes were born with normal kidney function but developed significant proteinuria 3 weeks after birth, suggesting an important role for N-WASP in maintaining foot processes. In addition, inducing deletion of N-WASP in adult mice resulted in severe proteinuria and kidney failure. Electron microscopy showed an accumulation of electron-dense patches of actin and strikingly altered morphology of podocyte foot processes. Although basic actin-based processes such as cell migration were not affected, primary cultures of N-WASP-deficient podocytes revealed significant impairment of dynamic actin reorganization events, including the formation of circular dorsal ruffles. Taken together, our findings suggest that N-WASP-mediated actin nucleation of branched microfilament networks is specifically required for the maintenance of foot processes, presumably sustaining the mechanical resistance of the filtration barrier.
Nephrology Dialysis Transplantation | 2012
Christoph Schell; Tobias B. Huber
Focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular disorder causing end-stage renal disease. Since the first description of this clinicopathological entity in the early 1930s, various studies have identified numerous underlying pathogenetic mechanisms. Nevertheless, FSGS is still a complex, only partially understood and in its classification sometimes confusing disease. A unifying pathophysiological concept has not been identified and might not even exist. However, research efforts of past decades identified FSGS as a podocytopathy with several podocyte molecules being key players in the development and the course of FSGS. Podocytes are crucially involved in the formation of the glomerular barrier and any assault on their delicate physiological balance and architecture can result in the development of proteinuria. The following review article will introduce most recent examples identifying novel players in the complex pathogenesis of FSGS.
JCI insight | 2016
Florian Grahammer; Christoph Wigge; Christoph Schell; Oliver Kretz; Jaakko Patrakka; Simon Schneider; Martin Klose; Sebastian J. Arnold; Anja Habermann; Ricarda Bräuniger; Markus M. Rinschen; Linus A. Völker; Andreas Bregenzer; Dennis Rubbenstroth; Melanie Boerries; Dontscho Kerjaschki; Jeffrey H. Miner; Gerd Walz; Thomas Benzing; Alessia Fornoni; Achilleas S. Frangakis; Tobias B. Huber
Vertebrate life critically depends on renal filtration and excretion of low molecular weight waste products. This process is controlled by a specialized cell-cell contact between podocyte foot processes: the slit diaphragm (SD). Using a comprehensive set of targeted KO mice of key SD molecules, we provided genetic, functional, and high-resolution ultrastructural data highlighting a concept of a flexible, dynamic, and multilayered architecture of the SD. Our data indicate that the mammalian SD is composed of NEPHRIN and NEPH1 molecules, while NEPH2 and NEPH3 do not participate in podocyte intercellular junction formation. Unexpectedly, homo- and heteromeric NEPHRIN/NEPH1 complexes are rarely observed. Instead, single NEPH1 molecules appear to form the lower part of the junction close to the glomerular basement membrane with a width of 23 nm, while single NEPHRIN molecules form an adjacent junction more apically with a width of 45 nm. In both cases, the molecules are quasiperiodically spaced 7 nm apart. These structural findings, in combination with the flexibility inherent to the repetitive Ig folds of NEPHRIN and NEPH1, indicate that the SD likely represents a highly dynamic cell-cell contact that forms an adjustable, nonclogging barrier within the renal filtration apparatus.
Journal of The American Society of Nephrology | 2013
Björn Hartleben; Eugen Widmeier; Martina Suhm; Kirstin Worthmann; Christoph Schell; Martin Helmstädter; Thorsten Wiech; Gerd Walz; Michael Leitges; Mario Schiffer; Tobias B. Huber
Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)--a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins--may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death.
Journal of Cell Biology | 2015
Takayuki Yasunaga; Sylvia Hoff; Christoph Schell; Martin Helmstädter; Oliver Kretz; Sebastian Kuechlin; Toma A. Yakulov; Christina Engel; Barbara Müller; Robert Bensch; Olaf Ronneberger; Tobias B. Huber; Soeren S. Lienkamp; Gerd Walz
Inturned-mediated complex formation of NPHP4 and DAAM1 is important for ciliogenesis and ciliary function in multiciliated cells, presumably because of its requirement for the local rearrangement of actin cytoskeleton.
Autophagy | 2013
Wibke Bechtel; Martin Helmstädter; Jan Balica; Björn Hartleben; Christoph Schell; Tobias B. Huber
Phosphatidylinositol phosphates are key regulators of vesicle identity, formation and trafficking. In mammalian cells, the evolutionarily conserved class III PtdIns 3-kinase PIK3C3/VPS34 is part of a large multiprotein complex that catalyzes the localized phosphorylation of phosphatidylinositol to phosphatidylinositol-3-phosphate (PtdIns3P). We demonstrate that PIK3C3 has a key function in vesicular trafficking, endocytosis and autophagosome-autolysosome formation in the highly specialized glomerular podocytes.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Christoph Schell; Manuel Rogg; Martina Suhm; Martin Helmstädter; Dominik Sellung; Mako Yasuda-Yamahara; Oliver Kretz; Victoria Küttner; Hani Suleiman; Laxmikanth Kollipara; René P. Zahedi; Albert Sickmann; Stefan Eimer; Andrey S. Shaw; Albrecht Kramer-Zucker; Mariko Hirano-Kobayashi; Takaya Abe; Shinichi Aizawa; Florian Grahammer; Björn Hartleben; Jörn Dengjel; Tobias B. Huber
Significance Loss of podocyte adhesion is a hallmark of glomerular disease progression. Here we unravel the in vivo composition of the podocyte adhesion machinery by the use of quantitative proteomics and identify the FERM domain protein EPB41L5 as a selectively enriched novel podocyte focal adhesion protein. EPB41L5 is essential to maintaining podocyte adhesion in vivo by recruiting the Rho GEF ARHGEF18, initiating a signaling cascade and ultimately resulting in increased actomyosin activity and focal adhesion stabilization. As EPB41L5 is down-regulated in various glomerular pathologies, these findings offer a perspective for interventions aiming to prevent loss of podocytes in glomerular disease. Podocytes form the outer part of the glomerular filter, where they have to withstand enormous transcapillary filtration forces driving glomerular filtration. Detachment of podocytes from the glomerular basement membrane precedes most glomerular diseases. However, little is known about the regulation of podocyte adhesion in vivo. Thus, we systematically screened for podocyte-specific focal adhesome (FA) components, using genetic reporter models in combination with iTRAQ-based mass spectrometry. This approach led to the identification of FERM domain protein EPB41L5 as a highly enriched podocyte-specific FA component in vivo. Genetic deletion of Epb41l5 resulted in severe proteinuria, detachment of podocytes, and development of focal segmental glomerulosclerosis. Remarkably, by binding and recruiting the RhoGEF ARGHEF18 to the leading edge, EPB41L5 directly controls actomyosin contractility and subsequent maturation of focal adhesions, cell spreading, and migration. Furthermore, EPB41L5 controls matrix-dependent outside-in signaling by regulating the focal adhesome composition. Thus, by linking extracellular matrix sensing and signaling, focal adhesion maturation, and actomyosin activation EPB41L5 ensures the mechanical stability required for podocytes at the kidney filtration barrier. Finally, a diminution of EPB41L5-dependent signaling programs appears to be a common theme of podocyte disease, and therefore offers unexpected interventional therapeutic strategies to prevent podocyte loss and kidney disease progression.