Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Antoniewski is active.

Publication


Featured researches published by Christophe Antoniewski.


Nature Immunology | 2008

The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in drosophila.

Safia Deddouche; Nicolas Matt; Aidan Budd; Stefanie Mueller; Cordula Kemp; Delphine Galiana-Arnoux; Catherine Dostert; Christophe Antoniewski; Jules A. Hoffmann; Jean-Luc Imler

Drosophila, like other invertebrates and plants, relies mainly on RNA interference for its defense against viruses. In flies, viral infection also triggers the expression of many genes. One of the genes induced, Vago, encodes a 18-kilodalton cysteine-rich polypeptide. Here we provide genetic evidence that the Vago gene product controlled viral load in the fat body after infection with drosophila C virus. Induction of Vago was dependent on the helicase Dicer-2. Dicer-2 belongs to the same DExD/H-box helicase family as do the RIG-I–like receptors, which sense viral infection and mediate interferon induction in mammals. We propose that this family represents an evolutionary conserved set of sensors that detect viral nucleic acids and direct antiviral responses.


Nature | 2012

Paramutation in Drosophila linked to emergence of a piRNA-producing locus.

Augustin de Vanssay; Anne-Laure Bougé; Antoine Boivin; Catherine Hermant; Laure Teysset; Valérie Delmarre; Christophe Antoniewski; Stéphane Ronsseray

A paramutation is an epigenetic interaction between two alleles of a locus, through which one allele induces a heritable modification in the other allele without modifying the DNA sequence. The paramutated allele itself becomes paramutagenic, that is, capable of epigenetically converting a new paramutable allele. Here we describe a case of paramutation in animals showing long-term transmission over generations. We previously characterized a homology-dependent silencing mechanism referred to as the trans-silencing effect (TSE), involved in P-transposable-element repression in the germ line. We now show that clusters of P-element-derived transgenes that induce strong TSE can convert other homologous transgene clusters incapable of TSE into strong silencers, which transmit the acquired silencing capacity through 50 generations. The paramutation occurs without any need for chromosome pairing between the paramutagenic and the paramutated loci, and is mediated by maternal inheritance of cytoplasm carrying Piwi-interacting RNAs (piRNAs) homologous to the transgenes. The repression capacity of the paramutated locus is abolished by a loss-of-function mutation of the aubergine gene involved in piRNA biogenesis, but not by a loss-of-function mutation of the Dicer-2 gene involved in siRNA production. The paramutated cluster, previously producing barely detectable levels of piRNAs, is converted into a stable, strong piRNA-producing locus by the paramutation and becomes fully paramutagenic itself. Our work provides a genetic model for the emergence of piRNA loci, as well as for RNA-mediated trans-generational repression of transposable elements.


Nature Structural & Molecular Biology | 2010

Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila

Arabinda Nayak; Bassam Berry; Michel Tassetto; Mark Kunitomi; Ashley Acevedo; Changhui Deng; Andrew N. Krutchinsky; John D. Gross; Christophe Antoniewski; Raul Andino

Insect viruses have evolved strategies to control the host RNAi antiviral defense mechanism. In nature, Drosophila melanogaster C virus (DCV) infection causes low mortality and persistent infection, whereas the closely related cricket paralysis virus (CrPV) causes a lethal infection. We show that these viruses use different strategies to modulate the host RNAi defense machinery. The DCV RNAi suppressor (DCV-1A) binds to long double-stranded RNA and prevents processing by Dicer2. In contrast, the CrPV suppressor (CrPV-1A) interacts with the endonuclease Argonaute 2 (Ago2) and inhibits its activity without affecting the microRNA (miRNA)-Ago1–mediated silencing. We examined the link between viral RNAi suppressors and the outcome of infection using recombinant Sindbis viruses encoding either CrPV-1A or DCV-1A. Flies infected with Sindbis virus expressing CrPV-1A showed a marked increase in virus production, spread and mortality. In contrast, Sindbis pathogenesis was only modestly increased by expression of DCV- 1A. We conclude that RNAi suppressors function as virulence factors in insects and can target the Drosophila RNAi pathway at different points.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila

Delphine Fagegaltier; Anne-Laure Bougé; Bassam Berry; Émilie Poisot; Odile Sismeiro; Jean-Yves Coppée; Laurent Théodore; Olivier Voinnet; Christophe Antoniewski

A new class of small RNAs (endo-siRNAs) produced from endogenous double-stranded RNA (dsRNA) precursors was recently shown to mediate transposable element (TE) silencing in the Drosophila soma. These endo-siRNAs might play a role in heterochromatin formation, as has been shown in S. pombe for siRNAs derived from repetitive sequences in chromosome pericentromeres. To address this possibility, we used the viral suppressors of RNA silencing B2 and P19. These proteins normally counteract the RNAi host defense by blocking the biogenesis or activity of virus-derived siRNAs. We hypothesized that both proteins would similarly block endo-siRNA processing or function, thereby revealing the contribution of endo-siRNA to heterochromatin formation. Accordingly, P19 as well as a nuclear form of P19 expressed in Drosophila somatic cells were found to sequester TE-derived siRNAs whereas B2 predominantly bound their longer precursors. Strikingly, B2 or the nuclear form of P19, but not P19, suppressed silencing of heterochromatin gene markers in adult flies, and altered histone H3-K9 methylation as well as chromosomal distribution of histone methyl transferase Su(var)3–9 and Heterochromatin Protein 1 in larvae. Similar effects were observed in dcr2, r2d2, and ago2 mutants. Our findings provide evidence that a nuclear pool of TE-derived endo-siRNAs is involved in heterochromatin formation in somatic tissues in Drosophila.


Insect Biochemistry and Molecular Biology | 1993

Structural features critical to the activity of an ecdysone receptor binding site

Christophe Antoniewski; Monique Laval; Jean-Antoine Lepesant

Two ecdysone-response elements from the hsp27 (hsp27 EcRE) and the Fbp1 (D EcRE) genes of Drosophila melanogaster were used as probes in a gel shift assay to investigate the interactions of the ecdysone receptor (EcR) with its cognate DNA response element. The source of EcR was a nuclear extract from the late third-larval instar fat body. The hsp27 and D EcREs share a sequence similarity at 12 positions over a 15bp region including an imperfect palindromic structure consisting of two pentamer half-sites separated by a single intervening nucleotide. We have shown that a short oligonucleotide containing this 11bp imperfect palindrome of the hsp27 EcRE and three flanking bp on each side is an efficient EcR binding site. Mutational analysis confirms that the integrity of both these half-sites as well as their 1bp spacing are critical for binding of the ecdysone receptor. The D EcRE behaved as a much weaker EcR binding site than the hsp27 EcRE but a single bp substitution was sufficient to confer upon it a binding capacity equivalent to that of the hsp27 EcRE. These results have led us to propose the sequence PuG(G/T)T(C/G)A(N)TG(C/A)(C/A)(C/t)Py as a revised version of a previously proposed EcRE consensus sequence.


Molecular and Cellular Biology | 1996

Direct repeats bind the EcR/USP receptor and mediate ecdysteroid responses in Drosophila melanogaster.

Christophe Antoniewski; B Mugat; F Delbac; Jean-Antoine Lepesant

The steroid hormone 20-hydroxyecdysone plays a key role in the induction and modulation of morphogenetic events throughout Drosophila development. Previous studies have shown that a heterodimeric nuclear receptor composed of the EcR and USP proteins mediates the action of the hormone at the transcriptional through binding to palindromic ecdysteroid mediates the action of the hormone at the transcriptional level through binding to palindromic ecdysteroid response elements (EcREs) such as those present in the promoter of the hsp27 gene or the fat body-specific enhancer of the Fbp1 gene. We show that in addition to palindromic EcREs, the EcR/USP heterodimer can bind in vitro with various affinities to direct repetitions of the motif AGGTCA separated by 1 to 5 nucleotides (DR1 to DR5), which are known to be target sites for vertebrate nuclear receptors. At variance with the receptors, EcR/USP was also found to bind to a DR0 direct repeat with no intervening nucleotide. In cell transformation assays, direct repeats DR0 to DR5 alone can render the minimum viral tk or Drosophila Fbp1 promoter responsive to 20-hydroxyecdysone, as does the palindromic hsp27 EcRE. In a transgenic assay, however, neither the palindromic hsp27 element nor direct repeat DR3 alone can make the Fbp1 minimal promoter responsive to premetamorphic ecdysteroid peaks. In contrast, DR0 and DR3 elements, when substituted for the natural palindromic EcRE in the context of the Fbp1 enhancer, can drive a strong fat body-specific ecdysteroid response in transgenic animals. These results demonstrate that directly repeated EcR/USP binding sites are as effective as palindromic EcREs in vivo. They also provide evidence that additional flanking regulatory sequences are crucially required to potentiate the hormonal response mediated by both types of elements and specify its spatial and temporal pattern.


Molecular and Cellular Biology | 1994

The ecdysone response enhancer of the Fbp1 gene of Drosophila melanogaster is a direct target for the EcR/USP nuclear receptor.

Christophe Antoniewski; M Laval; A Dahan; Jean-Antoine Lepesant

The transcription of the Drosophila melanogaster Fbp1 gene is induced by the steroid hormone 20-hydroxyecdysone and restricted to the late-third-instar fat body tissue. In a previous study we showed that the -68 to -138 region relative to the transcription start site acts as an ecdysone-dependent third-instar fat body-specific enhancer in a transgenic assay. Here we report that seven nucleoprotein complexes are formed in vitro on this enhancer when a nuclear extract from late-third-instar fat body is used in a gel shift assay. Accurate mapping of the binding sites of the complexes revealed a remarkably symmetrical organization. Using specific antibodies, one of the complexes was identified as a heterodimer consisting of the ecdysone receptor (EcR) and Ultraspiracle (USP) proteins. The binding site of the heterodimer as defined by mutagenesis and methylation interference experiments bears strong sequence similarity to the canonical hsp27 ecdysone response element, including an imperfect palindromic structure. The two elements diverge at three positions in both half-sites, indicating that the structure of an active EcR/USP binding site allows considerable sequence variations. In vivo footprinting experiments using ligation-mediated PCR and wild-type or ecdysteroid-deficient larvae show that occupancy of the Fbp1 EcR/USP binding site and adjacent region is dependent on a high concentration of ecdysteroids. These results provide strong evidence for a direct role of the EcR/USP heterodimer in driving gene expression in response to changes of the ecdysteroid titer during Drosophila larval development.


Molecular and Cellular Biology | 2005

The Histone H3 Acetylase dGcn5 Is a Key Player in Drosophila melanogaster Metamorphosis

Clément Carré; Dimitri Szymczak; Josette Pidoux; Christophe Antoniewski

ABSTRACT Although it has been well established that histone acetyltransferases (HATs) are involved in the modulation of chromatin structure and gene transcription, there is only little information on their developmental role in higher organisms. Gcn5 was the first transcription factor with HAT activity identified in eukaryotes. Here we report the isolation and characterization of Drosophila melanogaster dGcn5 mutants. Null dGcn5 alleles block the onset of both oogenesis and metamorphosis, while hypomorphic dGcn5 alleles impair the formation of adult appendages and cuticle. Strikingly, the dramatic loss of acetylation of the K9 and K14 lysine residues of histone H3 in dGcn5 mutants has no noticeable effect on larval tissues. In contrast, strong cell proliferation defects in imaginal tissues are observed. In vivo complementation experiments revealed that dGcn5 integrates specific functions in addition to chromosome binding and acetylation. Surprisingly, a dGcn5 variant protein with a deletion of the bromodomain, which has been shown to recognize acetylated histones, appears to be fully functional. Our results establish dGcn5 as a major histone H3 acetylase in Drosophila which plays a key role in the control of specific morphogenetic cascades during developmental transitions.


RNA | 2012

Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles.

Alice Jouneau; Constance Ciaudo; Odile Sismeiro; Vincent Brochard; Luc Jouneau; Sandrine Vandormael-Pournin; Jean-Yves Coppée; Qi Zhou; Edith Heard; Christophe Antoniewski; Michel Cohen-Tannoudji

Over the last years, the microRNA (miRNA) pathway has emerged as a key component of the regulatory network of pluripotency. Although clearly distinct states of pluripotency have been described in vivo and ex vivo, differences in miRNA expression profiles associated with the developmental modulation of pluripotency have not been extensively studied so far. Here, we performed deep sequencing to profile miRNA expression in naive (embryonic stem cell [ESC]) and primed (epiblast stem cell [EpiSC]) pluripotent stem cells derived from mouse embryos of identical genetic background. We developed a graphical representation method allowing the rapid identification of miRNAs with an atypical profile including mirtrons, a small nucleolar RNA (snoRNA)-derived miRNA, and miRNAs whose biogenesis may differ between ESC and EpiSC. Comparison of mature miRNA profiles revealed that ESCs and EpiSCs exhibit very different miRNA signatures with one third of miRNAs being differentially expressed between the two cell types. Notably, differential expression of several clusters, including miR290-295, miR17-92, miR302/367, and a large repetitive cluster on chromosome 2, was observed. Our analysis also showed that differentiation priming of EpiSC compared to ESC is evidenced by changes in miRNA expression. These dynamic changes in miRNAs signature are likely to reflect both redundant and specific roles of miRNAs in the fine-tuning of pluripotency during development.


PLOS Pathogens | 2012

Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses

Joël T. van Mierlo; Alfred W. Bronkhorst; Gijs J. Overheul; Sajna Anand Sadanandan; Jens-Ola Ekström; Marco Heestermans; Dan Hultmark; Christophe Antoniewski; Ronald P. van Rij

RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus infected Drosophila. Furthermore, we demonstrate that the Nora virus VP1 protein contains RNAi suppressive activity in vitro and in vivo that enhances pathogenicity of recombinant Sindbis virus in an RNAi dependent manner. Nora virus VP1 and the viral suppressor of RNAi of Cricket paralysis virus (1A) antagonized Argonaute-2 (AGO2) Slicer activity of RNA induced silencing complexes pre-loaded with a methylated single-stranded guide strand. The convergent evolution of AGO2 suppression in two unrelated insect RNA viruses highlights the importance of AGO2 in antiviral defense.

Collaboration


Dive into the Christophe Antoniewski's collaboration.

Top Co-Authors

Avatar

Jean-Antoine Lepesant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Antoine Lepesant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bruno Mugat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Vincent C. Henrich

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Carissimo

Pierre-and-Marie-Curie University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge