G. Bugnon
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Bugnon.
Nano Letters | 2011
Corsin Battaglia; Jordi Escarré; Karin Söderström; Lukas Erni; Laura Ding; G. Bugnon; Adrian Billet; Mathieu Boccard; Loris Barraud; Stefaan De Wolf; Franz-Josef Haug; Matthieu Despeisse; Christophe Ballif
We demonstrate high-efficiency thin-film silicon solar cells with transparent nanotextured front electrodes fabricated via ultraviolet nanoimprint lithography on glass substrates. By replicating the morphology of state-of-the-art nanotextured zinc oxide front electrodes known for their exceptional light trapping properties, conversion efficiencies of up to 12.0% are achieved for micromorph tandem junction cells. Excellent light incoupling results in a remarkable summed short-circuit current density of 25.9 mA/cm(2) for amorphous top cell and microcrystalline bottom cell thicknesses of only 250 and 1100 nm, respectively. As efforts to maximize light harvesting continue, our study validates nanoimprinting as a versatile tool to investigate nanophotonic effects of a large variety of nanostructures directly on device performance.
Applied Physics Letters | 2010
Peter Cuony; Michael Marending; D. T. L. Alexander; Mathieu Boccard; G. Bugnon; Matthieu Despeisse; Christophe Ballif
Lower absorption, lower refractive index, and tunable resistance are three advantages of amorphous silicon oxide containing nanocrystalline silicon grains (nc-SiOx) compared to microcrystalline silicon (μc-Si), when used as a p-type layer in μc-Si thin-film solar cells. We show that p-nc-SiOx with its particular nanostructure increases μc-Si cell efficiency by reducing reflection and parasitic absorption losses depending on the roughness of the front electrode. Furthermore, we demonstrate that the p-nc-SiOx reduces the detrimental effects of the roughness on the electrical characteristics, and significantly increases μc-Si and Micromorph cell efficiency on substrates until now considered too rough for thin-film silicon solar cells.
Applied Physics Letters | 2010
Matthieu Despeisse; G. Bugnon; A. Feltrin; M. Stueckelberger; Peter Cuony; F. Meillaud; Adrian Billet; Christophe Ballif
The deposition of thin-film silicon solar cells on highly textured substrates results in improved light trapping in the cell. However, the growth of silicon layers on rough substrates can often lead to undesired current drains, degrading performance and reliability of the cells. We show that the use of a silicon oxide interlayer between the active area and the back contact of the cell permits in such cases to improve the electrical properties. Relative increases of up to 7.5% of fill factor and of 6.8% of conversion efficiency are shown for amorphous silicon cells deposited on highly textured substrates, together with improved yield and low-illumination performance.
Advanced Materials | 2012
Peter Cuony; Duncan T. L. Alexander; Ivan Perez-Wurfl; Matthieu Despeisse; G. Bugnon; Mathieu Boccard; T. Söderström; Aïcha Hessler-Wyser; Cécile Hébert; Christophe Ballif
Nanometer wide silicon filaments embedded in an amorphous silicon oxide matrix are grown at low temperatures over a large area. The optical and electrical properties of these mixed-phase nanomaterials can be tuned independently, allowing for advanced light management in high efficiency thin-film silicon solar cells and for band-gap tuning via quantum confinement in third-generation photovoltaics.
Applied Physics Letters | 2010
Corsin Battaglia; Karin Söderström; Jordi Escarré; Franz-Josef Haug; Didier Dominé; Peter Cuony; Mathieu Boccard; G. Bugnon; Céline Denizot; Matthieu Despeisse; A. Feltrin; Christophe Ballif
We propose the use of transparent replicated random nanostructures fabricated via nanoimprinting on glass as next-generation superstrates for thin film silicon solar cells. We validate our approach by demonstrating short-circuit current densities for p-i-n hydrogenated microcrystalline silicon solar cells as high as for state-of-the-art nanotextured ZnO front electrodes. Our methodology opens exciting possibilities to integrate a large variety of nanostructures into p-i-n solar cells and allows to systematically investigate the influence of interface morphology on the optical and electronic properties of the device in order to further improve device performance.
Journal of Applied Physics | 2012
Karin Söderström; G. Bugnon; Rémi Biron; Céline Pahud; Fanny Meillaud; Franz-Josef Haug; Christophe Ballif
Karin Soderstrom, Gregory Bugnon, Remi Biron, Celine Pahud, Fanny Meillaud et al. Citation: J. Appl. Phys. 112, 114503 (2012); doi: 10.1063/1.4768272 View online: http://dx.doi.org/10.1063/1.4768272 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v112/i11 Published by the American Institute of Physics.
Journal of Applied Physics | 2013
Michael Stuckelberger; Matthieu Despeisse; G. Bugnon; Jan-Willem Schüttauf; Franz-Josef Haug; Christophe Ballif
Several amorphous silicon (a-Si:H) deposition conditions have been reported to produce films that degrade least under light soaking when incorporated into a-Si:H solar cells. However, a systematic comparison of these a-Si:H materials has never been presented. In the present study, different plasma-enhanced chemical vapor deposition conditions, yielding standard low-pressure VHF a-Si:H, protocrystalline, polymorphous, and high-pressure RF a-Si:H materials, are compared with respect to their optical properties and their behavior when incorporated into single-junction solar cells. A wide deposition parameter space has been explored in the same deposition system varying hydrogen dilution, deposition pressure, temperature, frequency, and power. From the physics of layer growth, to layer properties, to solar cell performance and light-induced degradation, a consistent picture of a-Si:H materials that are currently used for a-Si:H solar cells emerges. The applications of these materials in single-junction, tandem, and triple-junction solar cells are discussed, as well as their deposition compatibility with rough substrates, taking into account aspects of voltage, current, and charge collection. In sum, this contributes to answering the question, “Which material is best for which type of solar cell?”
IEEE Journal of Photovoltaics | 2014
Mathieu Boccard; Matthieu Despeisse; Jordi Escarré; X. Niquille; G. Bugnon; Simon Haenni; Maximilien Bonnet-Eymard; Fanny Meillaud; Christophe Ballif
We report the recent advances and key requirements for high-efficiency “micromorph” tandem thin-film silicon solar cells composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell. The impact of inserting a low-refractive-index silicon-oxide (SiOx) film as intermediate reflecting layer (IRL) is highlighted. We show that refractive indexes as low as 1.75 can be obtained for layers still conducting enough to be implemented in solar cells, and without no additional degradation. This allows for high top-cell current densities with thin top cells, enabling low degradation rates. A micromorph cell with a certified efficiency of 12.63% (short-circuit current density of 12.8 mA/cm2) is obtained for an optimized stack. Furthermore, short-circuit current densities as high as 15.9 mA/cm2 are reported in the amorphous silicon top-cell of micromorph devices by combining a 150-nm-thick SiOx-based IRL and a textured antireflecting coating at the air-glass interface.
Journal of Applied Physics | 2011
Corsin Battaglia; Lukas Erni; Mathieu Boccard; Loris Barraud; Jordi Escarré; Karin Söderström; G. Bugnon; Adrian Billet; Laura Ding; Matthieu Despeisse; Franz-Josef Haug; Stefaan De Wolf; Christophe Ballif
We investigate the performance of hydrogenated indium oxide as a transparent front electrode for micromorph thin-film silicon solar cells on glass. Light trapping is achieved by replicating the morphology of state-of-the-art zinc oxide electrodes, known for their outstanding light trapping properties, via ultraviolet nanoimprint lithography. As a result of the high electron mobility and excellent near-infrared transparency of hydrogenated indium oxide, the short-circuit current density of the cells is improved with respect to indium tin oxide and zinc oxide electrodes. We assess the potential for further current gains by identifying remaining sources of parasitic absorption and evaluate the light trapping capacity of each electrode. We further present a method, based on nonabsorbing insulating silicon nitride electrodes, allowing one to directly relate the optical reflectance to the external quantum efficiency. Our method provides a useful experimental tool to evaluate the light trapping potential of novel photonic nanostructures by a simple optical reflectance measurement, avoiding complications with electrical cell performance.
IEEE Journal of Photovoltaics | 2012
Mathieu Boccard; T. Söderström; Peter Cuony; Corsin Battaglia; Simon Hänni; Sylvain Nicolay; Laura Ding; M. Benkhaira; G. Bugnon; Adrian Billet; Mathieu Charrière; Fanny Meillaud; Matthieu Despeisse; Christophe Ballif
The quest for increased performances in thin-film silicon micromorph tandem devices nowadays requires an increase of current density. This can be achieved with thin cells by combining both robust cell design and efficient light management schemes. In this paper, we identify three key requirements for the transparent conductive oxide electrodes. First, strong light scattering into large angles is needed on the entire useful wavelength range: A front electrode texture with large enough features is shown to grant a high total current (typically >26 mA/cm2 with a 2.4-μm-thick absorber material), while sharp features are reported to allow for high top cell current (>13 mA/cm2) and reduced reflection at the ZnO/Si interface. Second, sufficiently smooth substrate features are needed to guarantee a high quality of the silicon active material, ensuring good and stable electrical properties (typically Voc around 1.4 V). Third, conduction and transparency of electrodes must be cleverly balanced, requiring high transparent conductive oxide mobility (∼50 cm