Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Fremaux is active.

Publication


Featured researches published by Christophe Fremaux.


Science | 2007

CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes

Rodolphe Barrangou; Christophe Fremaux; Hélène Deveau; Melissa Richards; Patrick Boyaval; Sylvain Moineau; Dennis A. Romero; Philippe Horvath

Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.


Nature | 2010

The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA

Josiane E. Garneau; Marie-Ève Dupuis; Manuela Villion; Dennis A. Romero; Rodolphe Barrangou; Patrick Boyaval; Christophe Fremaux; Philippe Horvath; Alfonso H. Magadán; Sylvain Moineau

Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains.


Journal of Bacteriology | 2008

Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus

Hélène Deveau; Rodolphe Barrangou; Josiane E. Garneau; Jessica M. Labonté; Christophe Fremaux; Patrick Boyaval; Dennis A. Romero; Philippe Horvath; Sylvain Moineau

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.


Journal of Bacteriology | 2008

Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus.

Philippe Horvath; Dennis A. Romero; Anne-Claire Coûté-Monvoisin; Melissa Richards; Hélène Deveau; Sylvain Moineau; Patrick Boyaval; Christophe Fremaux; Rodolphe Barrangou

Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strains were studied, and 109 unique spacer arrangements were observed across the three CRISPR loci. Overall, 3,626 spacers were analyzed, including 2,829 for CRISPR1 (782 unique), 173 for CRISPR2 (16 unique), and 624 for CRISPR3 (154 unique). Sequence analysis of the spacers revealed homology and identity to phage sequences (77%), plasmid sequences (16%), and S. thermophilus chromosomal sequences (7%). Polymorphisms were observed for the CRISPR repeats, CRISPR spacers, cas genes, CRISPR motif, locus architecture, and specific sequence content. Interestingly, CRISPR loci evolved both via polarized addition of novel spacers after exposure to foreign genetic elements and via internal deletion of spacers. We hypothesize that the level of diversity is correlated with relative CRISPR activity and propose that the activity is highest for CRISPR1, followed by CRISPR3, while CRISPR2 may be degenerate. Globally, the dynamic nature of CRISPR loci might prove valuable for typing and comparative analyses of strains and microbial populations. Also, CRISPRs provide critical insights into the relationships between prokaryotes and their environments, notably the coevolution of host and viral genomes.


Nucleic Acids Research | 2011

The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli

Rimantas Sapranauskas; Giedrius Gasiunas; Christophe Fremaux; Rodolphe Barrangou; Philippe Horvath; Virginijus Siksnys

The CRISPR/Cas adaptive immune system provides resistance against phages and plasmids in Archaea and Bacteria. CRISPR loci integrate short DNA sequences from invading genetic elements that provide small RNA-mediated interference in subsequent exposure to matching nucleic acids. In Streptococcus thermophilus, it was previously shown that the CRISPR1/Cas system can provide adaptive immunity against phages and plasmids by integrating novel spacers following exposure to these foreign genetic elements that subsequently direct the specific cleavage of invasive homologous DNA sequences. Here, we show that the S. thermophilus CRISPR3/Cas system can be transferred into Escherichia coli and provide heterologous protection against plasmid transformation and phage infection. We show that interference is sequence-specific, and that mutations in the vicinity or within the proto-spacer adjacent motif (PAM) allow plasmids to escape CRISPR-encoded immunity. We also establish that cas9 is the sole cas gene necessary for CRISPR-encoded interference. Furthermore, mutation analysis revealed that interference relies on the Cas9 McrA/HNH- and RuvC/RNaseH-motifs. Altogether, our results show that active CRISPR/Cas systems can be transferred across distant genera and provide heterologous interference against invasive nucleic acids. This can be leveraged to develop strains more robust against phage attack, and safer organisms less likely to uptake and disseminate plasmid-encoded undesirable genetic elements.


International Journal of Food Microbiology | 2009

Comparative analysis of CRISPR loci in lactic acid bacteria genomes

Philippe Horvath; Anne-Claire Coûté-Monvoisin; Dennis A. Romero; Patrick Boyaval; Christophe Fremaux; Rodolphe Barrangou

Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in bacteria and archaea, that provide acquired immunity against foreign genetic elements. Here, we investigate the occurrence of CRISPR loci in the genomes of lactic acid bacteria (LAB), including members of the Firmicutes and Actinobacteria phyla. A total of 102 complete and draft genomes across 11 genera were studied and 66 CRISPR loci were identified in 26 species. We provide a comparative analysis of the CRISPR/cas content and diversity across LAB genera and species for 37 sets of CRISPR loci. We analyzed CRISPR repeats, CRISPR spacers, leader sequences, and cas gene content, sequences and architecture. Interestingly, multiple CRISPR families were identified within Bifidobacterium, Lactobacillus and Streptococcus, and similar CRISPR loci were found in distant organisms. Overall, eight distinct CRISPR families were identified consistently across CRISPR repeats, cas gene content and architecture, and sequences of the universal cas1 gene. Since the clustering of the CRISPR families does not correlate with the classical phylogenetic tree, we hypothesize that CRISPR loci have been subjected to horizontal gene transfer and further evolved independently in select lineages, in part due to selective pressure resulting from phage predation. Globally, we provide additional insights into the origin and evolution of CRISPR loci and discuss their contribution to microbial adaptation.


Journal of Bacteriology | 2010

A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius.

Laetitia Fontaine; Céline Boutry; Marie Henry de Frahan; Brigitte Delplace; Christophe Fremaux; Philippe Horvath; Patrick Boyaval; Pascal Hols

In streptococcal species, the key step of competence development is the transcriptional induction of comX, which encodes the alternative sigma factor sigma(X), which positively regulates genes necessary for DNA transformation. In Streptococcus species belonging to the mitis and mutans groups, induction of comX relies on the activation of a three-component system consisting of a secreted pheromone, a histidine kinase, and a response regulator. In Streptococcus thermophilus, a species belonging to the salivarius group, the oligopeptide transporter Ami is essential for comX expression under competence-inducing conditions. This suggests a different regulation pathway of competence based on the production and reimportation of a signal peptide. The objective of our work was to identify the main actors involved in the early steps of comX induction in S. thermophilus LMD-9. Using a transcriptomic approach, four highly induced early competence operons were identified. Among them, we found a Rgg-like regulator (Ster_0316) associated with a nonannotated gene encoding a 24-amino-acid hydrophobic peptide (Shp0316). Through genetic deletions, we showed that these two genes are essential for comX induction. Moreover, addition to the medium of synthetic peptides derived from the C-terminal part of Shp0316 restored comX induction and transformation of a Shp0316-deficient strain. These peptides also induced competence in S. thermophilus and Streptococcus salivarius strains that are poorly transformable or not transformable. Altogether, our results show that Ster_0316 and Shp0316, renamed ComRS, are the two members of a novel quorum-sensing system responsible for comX induction in species from the salivarius group, which differs from the classical phosphorelay three-component system identified previously in streptococci.


Applied and Environmental Microbiology | 2000

Method for Rapid Purification of Class IIa Bacteriocins and Comparison of Their Activities

D. Guyonnet; Christophe Fremaux; Yves Cenatiempo; Jean-Marc Berjeaud

ABSTRACT A three-step method was developed for the purification of mesentericin Y105 (60% yield) from the culture supernatant ofLeuconostoc mesenteroides Y105. The same procedure was successfully applied to the purification of five other anti-Listeria bacteriocins identified by mass spectrometry. Specific activities of the purified bacteriocins were compared.


Applied and Environmental Microbiology | 2005

Genomic Organization and Molecular Analysis of Virulent Bacteriophage 2972 Infecting an Exopolysaccharide-Producing Streptococcus thermophilus Strain

Céline Lévesque; Martin Duplessis; Jessica M. Labonté; Steve Labrie; Christophe Fremaux; Denise M. Tremblay; Sylvain Moineau

ABSTRACT The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization—time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed.


Environmental Microbiology | 2013

Phage mutations in response to CRISPR diversification in a bacterial population

Christine L. Sun; Rodolphe Barrangou; Brian C. Thomas; Philippe Horvath; Christophe Fremaux; Jillian F. Banfield

Interactions between bacteria and their coexisting phage populations impact evolution and can strongly influence biogeochemical processes in natural ecosystems. Periodically, mutation or migration results in exposure of a host to a phage to which it has no immunity; alternatively, a phage may be exposed to a host it cannot infect. To explore the processes by which coexisting, co-evolving hosts and phage populations establish, we cultured Streptococcus thermophilus DGCC7710 with phage 2972 and tracked CRISPR (clustered regularly interspaced short palindromic repeats) diversification and host-phage co-evolution in a population derived from a colony that acquired initial CRISPR-encoded immunity. After 1 week of co-culturing, the coexisting host-phage populations were metagenomically characterized using 454 FLX Titanium sequencing. The evolved genomes were compared with reference genomes to identify newly incorporated spacers in S. thermophilus DGCC7710 and recently acquired single-nucleotide polymorphisms (SNPs) in phage 2972. Following phage exposure, acquisition of immune elements (spacers) led to a genetically diverse population with multiple subdominant strain lineages. Phage mutations that circumvented three early immunization events were localized in the proto-spacer adjacent motif (PAM) or near the PAM end of the proto-spacer, suggesting a strong selective advantage for the phage that mutated in this region. The sequential fixation or near fixation of these single mutations indicates selection events so severe that single phage genotypes ultimately gave rise to all surviving lineages and potentially carried traits unrelated to immunity to fixation.

Collaboration


Dive into the Christophe Fremaux's collaboration.

Top Co-Authors

Avatar

Rodolphe Barrangou

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laetitia Fontaine

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Marie Henry de Frahan

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Pascal Hols

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge