Christophe Giordano
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Giordano.
Proceedings of SPIE | 2016
Emiliano Diolaiti; P. Ciliegi; R. Abicca; Guido Agapito; Carmelo Arcidiacono; Andrea Baruffolo; M. Bellazzini; Valdemaro Biliotti; Marco Bonaglia; Giovanni Bregoli; Runa Briguglio; O. Brissaud; Lorenzo Busoni; Luca Carbonaro; A. Carlotti; E. Cascone; J.-J. Correia; Fausto Cortecchia; G. Cosentino; V. De Caprio; M. de Pascale; A. De Rosa; C. Del Vecchio; A. Delboulbé; G. Di Rico; S. Esposito; D. Fantinel; P. Feautrier; Corrado Felini; Debora Ferruzzi
MAORY is one of the four instruments for the E-ELT approved for construction. It is an adaptive optics module offering two compensation modes: multi-conjugate and single-conjugate adaptive optics. The project has recently entered its phase B. A system-level overview of the current status of the project is given in this paper.
Modeling, Systems Engineering, and Project Management for Astronomy VIII | 2018
Matteo Genoni; Marco Landoni; Marco Riva; Giorgio Pariani; E. Mason; Paolo Di Marcantonio; Oscar A. Gonzalez; Philipp Huke; H. Korhonen; Marco Xompero; Christophe Giordano; Igor Di Varano; Gianluca Li Causi; Ernesto Oliva; Thomas Marquart; A. Marconi
We present the updated design and architecture of the End-to-End simulator model of the high resolution spectrograph HIRES for the future Extremely Large Telescope (ELT). The model allows to simulate the propagation of photons starting from the scientific object of interest up to the detector, allowing to evaluate the performance impact of the different parameters in the spectrograph design. The model also includes a calibration light module, suitable to evaluate data reduction requirements. In this paper, we will detail the architecture of the simulator and the computational model which are strongly characterized by modularity and flexibility that will be crucial in the next generation instrumentation for projects such as the ELT due to of the high complexity and long-time design and development. We also highlight the Cloud Computing Architecture adopted for this software based on Amazon Web Services (AWS). We also present synthetic images obtained with the current version of the End-to-End simulator based on the requirements for ELTHIRES (especially high radial velocity accuracy) that are then ingested in the Data reduction Software (DRS) of CRIRES+ as case study.
Adaptive Optics Systems VI | 2018
Marco Bonaglia; Lorenzo Busoni; Cedric Plantet; Guido Agapito; Christophe Giordano; Simone Esposito; Gianluca Di Rico; Angelo Valentini; P. Ciliegi; Emiliano Diolaiti; Roberto Ragazzoni; M. Bellazzini; Ivan Di Antonio; Philippe Feautrier; Alfio Puglisi
The Natural Guide Star (NGS) Wavefront Sensor (WFS) sub-system of MAORY implements 3 Low-Order and Reference (LOR) WFS needed by the Multi-Conjugate Adaptive Optics (MCAO) system. Each LOR WFS has 2 main purposes: first, to sense the fast low-order modes that are affected by atmospheric anisoplanatism and second, to de-trend the LGS measurements from the slow spatial and temporal drifts of the Sodium layer. These features require to implement 2 different WFS sharing the same NGS and optical breadboard but being respectively a 2×2 Shack-Hartman Sensor (SHS) working at infrared wavelengths and a slow 10×10 SHS at visible bands. The NG WFS sub-system also provides a common support plate for the 3 WFS and their control electronics and cabling. The paper summarizes the status of the preliminary design of the LOR Module on the road to the MAORY Preliminary Design Review (PDR), focusing mainly on the description and analysis of the opto-mechanical arrangement foreseen for the NGS WFS sub-system. Performances and the design trade-offs of the NGS WFS sub-system are analyzed in a complementary paper. First, the requirement imposed by MAORY AO system are discussed. Then the paper gives an overview of the opto-mechanical arrangement for the main components of the sub-system: the support plate, the 3 WFS units and their interfaces to the instrument rotator. In the end the paper discusses the sub-system pointing and WFE budgets derived from different analyses. The design concept for the electronic devices of the sub-system, the cabinet arrangement and the cabling sheme are given in second complementary paper.
Proceedings of SPIE | 2016
Merieme Chadid; Jean Vernin; Lyu Abe; Karim Agabi; George Y. Jumper; George W. Preston; Christopher Sneden; Liyong Liu; Yongqiang Yao; Hongshuai Wang; Eric Aristidi; Jean-Pierre Rivet; Marcel Carbillet; Christophe Giordano; E. Bondoux; L. Moggio; Hervé Trinquet
In this invited paper, we implement a new way to study the stellar oscillations, pulsations and their evolutionary properties with long uninterrupted and continuous precision observations over 150 days from the ground, and without the regular interruptions imposed by the earth rotation. PAIX–First Robotic Antarctica Polar Mission– gives a new insight to cope with unresolved stellar enigma and stellar oscillation challenges and offers a great opportunity to benefit from an access to the best astronomical site on Earth –DomeC–. The project is made of low cost commercial components, and achieves astrophysical measurement time-series of stellar physics fields, challenging photometry from space that shows large gaps in terms of flexibility during the observing runs, the choice of targets, the repair of failures and the inexorable high costs. PAIX has yet more advantages than space missions in observing in UBV RI bands and then collecting unprecedented simultaneous multicolor light curves of several targets. We give a brief history of the Astronomy in Antarctica and describe the first polar robotized mission PAIX and the outcome of stellar physics from the heart of Antarctica during several polar nights. We briefly discuss our first results and perspectives on the pulsating stars and its evolution from Antarctica, especially the connection between temporal hydrodynamic phenomena and cyclic modulations. Finally, we highlight the impact of PAIX on the stellar physics study and the remaining challenges to successfully accomplish the Universe explorations under extreme conditions.
Ground-based and Airborne Instrumentation for Astronomy VII | 2018
Gianluca Di Rico; Christophe Giordano; Simone Esposito; N. Sanna; Guido Agapito; A. Tozzi; Ernesto Oliva; Marco Xompero; Marco Bonaglia
The first generation of ELT instruments will include an optical-infrared High Resolution Spectrograph, conventionally indicated as ELT-HIRES. This paper describes the optical design and overall architecture of the Integral Field Unit (IFU) that will fed the spectrograph. The module have the possibility to change the spaxel dimension thanks to a series of reflection mirrors and using a fast tip tilt mirror the position of the re-imaged foci on the fiber bundles can be adjusted looking at the focus image that is visible using a fiber viewer IR camera.
Adaptive Optics Systems VI | 2018
Charlotte Z. Bond; Peter L. Wizinowich; Mark Richard Chun; Dimitri Mawet; Scott Lilley; Sylvain Cetre; Nemanja Jovanovic; Jacques-Robert Delorme; E. Wetherell; Shane Jacobson; Charles Lockhart; Eric Warmbier; James K. Wallace; Donald N. Hall; Sean B. Goebel; Olivier Guyon; Cedric Plantet; Guido Agapito; Christophe Giordano; Simone Esposito; Bruno Femenia-Castella
Wavefront sensing in the infrared is highly desirable for the study of M-type stars and cool red objects, as they are sufficiently bright in the infrared to be used as the adaptive optics guide star. This aids in high contrast imaging, particularly for low mass stars where the star-to-planet brightness ratio is reduced. Here we discuss the combination of infrared detector technology with the highly sensitive Pyramid wavefront sensor (WFS) for a new generation of systems. Such sensors can extend the capabilities of current telescopes and meet the requirements for future instruments, such as those proposed for the giant segmented mirror telescopes. Here we introduce the infrared Pyramid WFS and discuss the advantages and challenges of this sensor. We present a new infrared Pyramid WFS for Keck, a key sub-system of the Keck Planet Imager and Characterizer (KPIC). The design, integration and testing is reported on, with a focus on the characterization of the SAPHIRA detector used to provide the H-band wavefront sensing. Initial results demonstrate a required effective read noise <1e– at high gain.
Adaptive Optics Systems VI | 2018
Marco Xompero; Christophe Giordano; Marco Bonaglia; Gianluca Di Rico; Guido Agapito; Simone Esposito; A. Tozzi; N. Sanna; Ernesto Oliva; A. Marconi
The HIRES-ELT instrument foresees an observing mode that delivers integral field high resolution spectroscopy with spatial sampling down to the diffraction limit of the ELT telescope. The IFU-SCAO module presented here is sub-system of the front-end of HIRES-ELT that includes two modules: SCAO and IFU. The first is the wavefront sensor, based on a pyramid beam-splitter, that provides the guiding on the reference star and the analysis of the incoming wavefront; the second is the module that transforms the incoming f/17.7 light beam from the telescope to the appropriate f/numbers to feed the spectrometer fibers-array with the required spatial scale. In this paper, we will present the SCAO optical design to allow the exoplanet atmosphere detection in reflection. To achieve this goal, we studied a feasible pyramid wavefront sensor to be inserted in a sliding arm of the HIRES front end. The CCD camera is based on a CCD220 chip in which will be imaged the telescope pupil, sampled with a 90x90 sub-aperture grid. A total of 4089 Karhunen-Loeve modes have been generated and used to close an end-to-end simulation. The AO loop runs up to 1000 KHz and it allows to shrink the PSF to the diffraction limits of the telescope ant to achieve Strehl Ratio (SR) above 70% in best seeing case up to magnitude 15 in H-band and a SR permanently above 40%, same band, up to magnitude 14 in case of median seeing. For λ=1600nm the 50% of energy is reached before 1 λ/D for all the plotted I-magnitude under the best seeing conditions. Under Median seeing conditions, the 50% is reached before 2λ/D up to I-mag 13. For λ=1000nm instead, we reach the 50% of encircled energy before a radius of 2λ/D for I-mag less than 14 and after 5λ/D for I-mag greater than 15 in the best seeing case. For each IFU spatial sampling and resolution, we can reach a contrast of 103 at a distance of 4 spaxels from central peak.
Adaptive Optics Systems VI | 2018
Cedric Plantet; Guido Agapito; Christophe Giordano; Lorenzo Busoni; Marco Bonaglia; Simone Esposito; Carmelo Arcidiacono; Fausto Cortecchia; P. Ciliegi; Emiliano Diolaiti; Roberto Ragazzoni; Philippe Feautrier; M. Bellazzini
MAORY is the Multi-Conjugate Adaptive Optics module for the European ELT. It will provide a wide-field correction for the first-light instrument MICADO. The Low-Order wavefront modes will be sensed on 3 Natural Guide Stars with Shack-Hartmann Wavefront Sensors, so-called the LO WFS. In the presented work, we focus on the numerical study of the main aspects that depend on the LO WFS design and operational use: low-order sensing performance and sky coverage.
Adaptive Optics Systems VI | 2018
Andrea Baruffolo; Armando Riccardi; Simone Esposito; Guido Agapito; Valdemaro Biliotti; Runa Briguglio; Luca Carbonaro; Gianluca Di Rico; Debora Ferruzzi; Christophe Giordano; Paolo Grani; Tommaso Mazzoni; Alfio Puglisi; Marco Xompero; Markus Kasper; Reinhold J. Dorn; David Barr; Mark Downing; Javier Reyes-Moreno; Christian Soenke; Marcos Suárez Valles; Marco Bonaglia
ERIS is the new AO instrument for VLT-UT4 led by a Consortium of Max-Planck Institut fuer Extraterrestrische Physik, UK-ATC, ETH-Zurich, NOVA-Leiden, ESO and INAF. The ERIS AO system provides NGS mode to deliver high contrast correction and LGS mode to extend high Strehl performance to large sky coverage. The AO module includes NGS and LGS wavefront sensors and, with VLT-AOF Deformable Secondary Mirror and Laser Facility, will provide AO correction to the high resolution coronagraphic imager NIX (1-5um) and the IFU spectrograph SPIFFIER (1-2.5um). In this paper, we present the final design of the ERIS AO system and the status of the of current MAIV phase.
Adaptive Optics Systems VI | 2018
Cedric Plantet; Guido Agapito; Christophe Giordano; Charlotte Z. Bond; Simone Esposito; Peter L. Wizinowich; Mojtaba Taheri
A future upgrade of the Keck II telescope’s adaptive optics system will include a near-infrared pyramid wavefront sensor. It will benefit from low-noise infrared detector technology, specifically the avalanche photodiode array SAPHIRA (Leonardo). The system will either operate with a natural guide star in a single conjugated adaptive optics system, or using a laser guide star (LGS), with the pyramid working as a low-order sensor. We present a study of the pyramid sensor’s performance via end-to-end simulations, including an analysis of calibration strategies. For LGS operation, we compare the pyramid to LIFT, a focal-plane sensor dedicated to low-order sensing.