Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianluca Di Rico is active.

Publication


Featured researches published by Gianluca Di Rico.


Proceedings of SPIE | 2006

The International Robotic Antarctic Infrared Telescope (IRAIT)

G. Tosti; M. Busso; Giuliano Nucciarelli; Marco Bagaglia; Fabio Roncella; Alberto Mancini; Sonia Castellini; Mirco Mariotti; Ezio Babucci; Gianfranco Chiocci; Oscar Straniero; M. Dolci; G. Valentini; Igor Di Varano; Danilo Pelusi; Gianluca Di Rico; M. Ragni; C. Abia; Inma Dominguez; Leonardo Corcione; Francesco Porcu; Paolo Conconi; Vincenzo De Caprio; Alverto Riva; Emilio Molinari; Filippo Maria Zerbi; F. Bortoletto; Carlotta Bonoli; Maurizio D'Alessandro; J. Colomé

Thanks to exceptional coldness, low sky brightness and low content of water vapour of the above atmosphere Dome C, one of the three highest peaks of the large Antarctic plateau, is likely to be the best site on Earth for thermal infrared observations (2.3-300 μm) as well as for the far infrared range (30 μm-1mm). IRAIT (International Robotic Antarctic Infrared Telescope) will be the first European Infrared telescope operating at Dome C. It will be delivered to Antarctica at the end of 2006, will reach Dome C at the end of 2007 and the first winter-over operation will start in spring 2008. IRAIT will offer a unique opportunity for astronomers to test and verify the astronomical quality of the site and it will be a useful test-instrument for a new generation of Antarctic telescopes and focal plane instrumentations. We give here a general overview of the project and of the logistics and transportation options adopted to facilitate the installation of IRAIT at Dome C. We summarize the results of the electrical, electronics and networking tests and of the sky polarization measurements carried out at Dome C during the 2005-2006 summer-campaign. We also present the 25 cm optical telescope (small-IRAIT project) that will installed at Dome C during the Antarctic summer 2006-2007 and that will start observations during the 2007 Antarctic winter when a member of the IRAIT collaboration will join the Italian-French Dome C winter-over team.


Proceedings of SPIE | 2014

ERIS: preliminary design phase overview

Harald Kuntschner; L. Jochum; Paola Amico; Johannes K. Dekker; Florian Kerber; Enrico Marchetti; Matteo Accardo; Roland Brast; Martin Brinkmann; Ralf Conzelmann; Bernard Delabre; Michel Duchateau; Enrico Fedrigo; Gert Finger; Christoph Frank; Fernando Gago Rodriguez; Barbara Klein; Jens Knudstrup; Miska Le Louarn; Lars Lundin; Andrea Modigliani; M. Müller; Mark Neeser; Sebastien Tordo; E. Valenti; F. Eisenhauer; E. Sturm; Helmut Feuchtgruber; Elisabeth M. George; Michael Hartl

The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation adaptive optics near-IR imager and spectrograph for the Cassegrain focus of the Very Large Telescope (VLT) Unit Telescope 4, which will soon make full use of the Adaptive Optics Facility (AOF). It is a high-Strehl AO-assisted instrument that will use the Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). The project has been approved for construction and has entered its preliminary design phase. ERIS will be constructed in a collaboration including the Max- Planck Institut für Extraterrestrische Physik, the Eidgenössische Technische Hochschule Zürich and the Osservatorio Astrofisico di Arcetri and will offer 1 - 5 μm imaging and 1 - 2.5 μm integral field spectroscopic capabilities with a high Strehl performance. Wavefront sensing can be carried out with an optical high-order NGS Pyramid wavefront sensor, or with a single laser in either an optical low-order NGS mode, or with a near-IR low-order mode sensor. Due to its highly sensitive visible wavefront sensor, and separate near-IR low-order mode, ERIS provides a large sky coverage with its 1’ patrol field radius that can even include AO stars embedded in dust-enshrouded environments. As such it will replace, with a much improved single conjugated AO correction, the most scientifically important imaging modes offered by NACO (diffraction limited imaging in the J to M bands, Sparse Aperture Masking and Apodizing Phase Plate (APP) coronagraphy) and the integral field spectroscopy modes of SINFONI, whose instrumental module, SPIFFI, will be upgraded and re-used in ERIS. As part of the SPIFFI upgrade a new higher resolution grating and a science detector replacement are envisaged, as well as PLC driven motors. To accommodate ERIS at the Cassegrain focus, an extension of the telescope back focal length is required, with modifications of the guider arm assembly. In this paper we report on the status of the baseline design. We will also report on the main science goals of the instrument, ranging from exoplanet detection and characterization to high redshift galaxy observations. We will also briefly describe the SINFONI-SPIFFI upgrade strategy, which is part of the ERIS development plan and the overall project timeline.


Proceedings of SPIE | 2010

Autonomous operations in extreme environments: the AMICA case

Gianluca Di Rico; M. Ragni; M. Dolci; Oscar Straniero; Angelo Valentini; G. Valentini; Amico Di Cianno; C. Giuliani; Carlotta Bonoli; F. Bortoletto; Maurizio D'Alessandro; Demetrio Magrin; Leonardo Corcione; Alberto Riva; C. Abia; Alberto Mancini; M. Busso; G. Tosti

An autonomous observatory is being installed at Dome C in Antarctica. It will be constituted by the International Robotic Antarctic Infrared Telescope (IRAIT) and the Antarctic Multiband Infrared CAmera (AMICA). Because of the extreme environment, the whole system has been developed to operate robotically, paying particular attention to the environmental conditions and the subsystems activity monitoring. A detailed description of the IRAIT/AMICA data acquisition process and management will be shown, focusing on automated procedures and solutions against safety risks.


Proceedings of SPIE | 2016

Design of the ERIS calibration unit

M. Dolci; Angelo Valentini; Gianluca Di Rico; Simone Esposito; Debora Ferruzzi; Armando Riccardi; Paolo Spanò; J. Antichi

The Enhanced Resolution Imager and Spectrograph (ERIS) is a new-generation instrument for the Cassegrain focus of the ESO UT4/VLT, aimed at performing AO-assisted imaging and medium resolution spectroscopy in the 1-5 micron wavelength range. ERIS consists of the 1-5 micron imaging camera NIX, the 1-2.5 micron integral field spectrograph SPIFFIER (a modified version of SPIFFI, currently operating on SINFONI), the AO module and the internal Calibration Unit (ERIS CU). The purpose of this unit is to provide facilities to calibrate the scientific instruments in the 1-2.5 micron and to perform troubleshooting and periodic maintenance tests of the AO module (e.g. NGS and LGS WFS internal calibrations and functionalities, ERIS differential flexures) in the 0.5 – 1 μm range. The ERIS CU must therefore be designed in order to provide, over the full 0.5 – 2.5 μm range, the following capabilities: 1) illumination of both the telescope focal plane and the telescope pupil with a high-degree of uniformity; 2) artificial point-like and extended sources onto the telescope focal plane, with high accuracy in both positioning and FWHM; 3) wavelength calibration; 4) high stability of these characteristics. In this paper the design of the ERIS CU, and the solutions adopted to fulfill all these requirements, is described. The ERIS CU construction is foreseen to start at the end of 2016.


Adaptive Optics Systems VI | 2018

Status of the preliminary design of the NGS WFS subsystem of MAORY

Marco Bonaglia; Lorenzo Busoni; Cedric Plantet; Guido Agapito; Christophe Giordano; Simone Esposito; Gianluca Di Rico; Angelo Valentini; P. Ciliegi; Emiliano Diolaiti; Roberto Ragazzoni; M. Bellazzini; Ivan Di Antonio; Philippe Feautrier; Alfio Puglisi

The Natural Guide Star (NGS) Wavefront Sensor (WFS) sub-system of MAORY implements 3 Low-Order and Reference (LOR) WFS needed by the Multi-Conjugate Adaptive Optics (MCAO) system. Each LOR WFS has 2 main purposes: first, to sense the fast low-order modes that are affected by atmospheric anisoplanatism and second, to de-trend the LGS measurements from the slow spatial and temporal drifts of the Sodium layer. These features require to implement 2 different WFS sharing the same NGS and optical breadboard but being respectively a 2×2 Shack-Hartman Sensor (SHS) working at infrared wavelengths and a slow 10×10 SHS at visible bands. The NG WFS sub-system also provides a common support plate for the 3 WFS and their control electronics and cabling. The paper summarizes the status of the preliminary design of the LOR Module on the road to the MAORY Preliminary Design Review (PDR), focusing mainly on the description and analysis of the opto-mechanical arrangement foreseen for the NGS WFS sub-system. Performances and the design trade-offs of the NGS WFS sub-system are analyzed in a complementary paper. First, the requirement imposed by MAORY AO system are discussed. Then the paper gives an overview of the opto-mechanical arrangement for the main components of the sub-system: the support plate, the 3 WFS units and their interfaces to the instrument rotator. In the end the paper discusses the sub-system pointing and WFE budgets derived from different analyses. The design concept for the electronic devices of the sub-system, the cabinet arrangement and the cabling sheme are given in second complementary paper.


Proceedings of SPIE | 2006

AMICA (Antarctic Multiband Infrared Camera) project

M. Dolci; Oscar Straniero; G. Valentini; Gianluca Di Rico; M. Ragni; Danilo Pelusi; Igor Di Varano; C. Giuliani; Amico Di Cianno; Angelo Valentini; Leonardo Corcione; F. Bortoletto; Maurizio D'Alessandro; Carlotta Bonoli; E. Giro; D. Fantinel; Demetrio Magrin; Filippo Maria Zerbi; Alberto Riva; Emilio Molinari; Paolo Conconi; Vincenzo De Caprio; M. Busso; G. Tosti; Giuliano Nucciarelli; Fabio Roncella; C. Abia

The Antarctic Plateau offers unique opportunities for ground-based Infrared Astronomy. AMICA (Antarctic Multiband Infrared CAmera) is an instrument designed to perform astronomical imaging from Dome-C in the near- (1 - 5 μm) and mid- (5 - 27 μm) infrared wavelength regions. The camera consists of two channels, equipped with a Raytheon InSb 256 array detector and a DRS MF-128 Si:As IBC array detector, cryocooled at 35 and 7 K respectively. Cryogenic devices will move a filter wheel and a sliding mirror, used to feed alternatively the two detectors. Fast control and readout, synchronized with the chopping secondary mirror of the telescope, will be required because of the large background expected at these wavelengths, especially beyond 10 μm. An environmental control system is needed to ensure the correct start-up, shut-down and housekeeping of the camera. The main technical challenge is represented by the extreme environmental conditions of Dome C (T about -90 °C, p around 640 mbar) and the need for a complete automatization of the overall system. AMICA will be mounted at the Nasmyth focus of the 80 cm IRAIT telescope and will perform survey-mode automatic observations of selected regions of the Southern sky. The first goal will be a direct estimate of the observational quality of this new highly promising site for Infrared Astronomy. In addition, IRAIT, equipped with AMICA, is expected to provide a significant improvement in the knowledge of fundamental astrophysical processes, such as the late stages of stellar evolution (especially AGB and post-AGB stars) and the star formation.


Software and Cyberinfrastructure for Astronomy V | 2018

The MAORY ICS software architecture

Emiliano Diolaiti; Philippe Feautrier; P. Ciliegi; Andrea Baruffolo; Bernardo Salasnich; Lorenzo Busoni; Alfio Puglisi; D. Fantinel; Gianluca Di Rico; L. Gluck; G. Zins; Dan Popovic; M. Kiekebusch; Andrea Balestra; Roberto Ragazzoni; Simone Esposito

The Multi Conjugate Adaptive Optics RelaY (MAORY) for ESO’s Extremely Large Telescope (ELT) is an adaptive optics module offering multi-conjugate (MCAO) and single-conjugate (SCAO) compensation modes. In MCAO, it relies on the use of up to six Laser Guide Stars (LGS) and three Natural Guide Stars (NGS) for atmospheric turbulence sensing and multiple mirrors for correction, providing high Strehl and high sky coverage. In SCAO mode, a single natural source is used as reference, providing better correction but in a smaller field. MAORY will be installed at the Nasmyth focus of the ELT. It will feed the MICADO first-light diffraction limited imager and a future second instrument. MAORY is being built by a Consortium composed by INAF in Italy and IPAG in France and is currently approaching end of phase B. In this paper we describe the preliminary design of the MAORY Instrument Control System Software (ICS SW). We start with an overview of the MAORY module and then describe the general architecture of the MAORY control network and software. We then describe the main software components, with particular emphasis to those managing the NGS and LGS wavefront sensors functions and the AO off-load and secondary loops, and the main interfaces to subsystems and external systems. We then conclude with a description of the software engineering practices adopted for the development of MAORY ICS SW.


Ground-based and Airborne Instrumentation for Astronomy VII | 2018

ELT-HIRES the High Resolution Spectrograph for the ELT: the IFU-SCAO module

Gianluca Di Rico; Christophe Giordano; Simone Esposito; N. Sanna; Guido Agapito; A. Tozzi; Ernesto Oliva; Marco Xompero; Marco Bonaglia

The first generation of ELT instruments will include an optical-infrared High Resolution Spectrograph, conventionally indicated as ELT-HIRES. This paper describes the optical design and overall architecture of the Integral Field Unit (IFU) that will fed the spectrograph. The module have the possibility to change the spaxel dimension thanks to a series of reflection mirrors and using a fast tip tilt mirror the position of the re-imaged foci on the fiber bundles can be adjusted looking at the focus image that is visible using a fiber viewer IR camera.


Ground-based and Airborne Instrumentation for Astronomy VII | 2018

Final design and construction of the ERIS calibration unit

Gianluca Di Rico; I. Di Antonio; M. Dolci; Angelo Valentini; Amico Di Cianno; Armando Riccardi; Debora Ferruzzi; Simone Esposito

The Calibration Unit (CU) is a subsystem of the Enhanced Resolution Imager and Spectrograph (ERIS), the newgeneration instrument for the Cassegrain focus of the ESO UT4/VLT, aimed at performing AO-assisted imaging and medium resolution spectroscopy in the 1-5 micron wavelength range. The ERIS-CU is aimed to providing both focal plane artificial sources and uniform illumination over the 0.4 - 2.4 micron wavelengh range, for purposes of calibration and technical check of the SPIFFIER spectrograph, the NIX camera and the AO Module. Some challenging aspects emerged during the detailed design phase, mainly related to the need to cover such a broad wavelength range while ensuring adequate photon rates, excellent image quality and high Strehl. The technical solutions adopted to achieve the final design goals are presented and their implementation during the construction phase are shown and discussed.


Adaptive Optics Systems VI | 2018

Electronics design of the LOR WFS module of MAORY

Lorenzo Busoni; Fausto Cortecchia; Gianluca Di Rico; Marco Bonaglia; Angelo Valentini; Simone Esposito; P. Ciliegi; Emiliano Diolaiti; Philippe Feautrier; M. Bellazzini; Roberto Ragazzoni; Ivan Di Antonio; Bernardo Salasnich

The LOR WFS module will provide low and medium order sensing for the MAORY MCAO mode. It is composed of three identical units, hosting two Shack-Hartmann wavefront sensors each: an infrared 2×2 sub-apertures, used for low order modes, and a visible 10×10 sub-apertures for the slow truth sensing needed to correct the LGS WFS measurements. In this paper we show the current design of the NGS WFS control electronics and the interfaces with the MICADO instrument.

Researchain Logo
Decentralizing Knowledge