Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Piesse is active.

Publication


Featured researches published by Christophe Piesse.


Journal of Biological Chemistry | 2010

Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide

Feten Abbassi; Olivier Lequin; Christophe Piesse; Nicole Goasdoue; Thierry Foulon; Pierre Nicolas; Ali Ladram

Because issues of cost and bioavailability have hampered the development of gene-encoded antimicrobial peptides to combat infectious diseases, short linear peptides with high microbial cell selectivity have been recently considered as antibiotic substitutes. A new type of short antimicrobial peptide, designated temporin-SHf, was isolated and cloned from the skin of the frog Pelophylax saharica. Temporin-SHf has a highly hydrophobic sequence (FFFLSRIFa) and possesses the highest percentage of Phe residues of any known peptide or protein. Moreover, it is the smallest natural linear antimicrobial peptide found to date, with only eight residues. Despite its small size and hydrophobicity, temporin-SHf has broad-spectrum microbicidal activity against Gram-positive and Gram-negative bacteria and yeasts, with no hemolytic activity. CD and NMR spectroscopy combined with restrained molecular dynamics calculations showed that the peptide adopts a well defined non-amphipathic α-helical structure from residue 3 to 8, when bound to zwitterionic dodecyl phosphocholine or anionic SDS micelles. Relaxation enhancement caused by paramagnetic probes showed that the peptide adopts nearly parallel orientations to the micelle surface and that the helical structure is stabilized by a compact hydrophobic core on one face that penetrates into the micelle interior. Differential scanning calorimetry on multilamellar vesicles combined with membrane permeabilization assays on bacterial cells indicated that temporin-SHf disrupts the acyl chain packing of anionic lipid bilayers, thereby triggering local cracks and microbial membrane disintegration through a detergent-like effect probably via the carpet mechanism. The short length, compositional simplicity, and broad-spectrum activity of temporin-SHf make it an attractive candidate to develop new antibiotic agents.


Biochemistry | 2008

Solution Structure and Model Membrane Interactions of Temporins-SH, Antimicrobial Peptides from Amphibian Skin. A NMR Spectroscopy and Differential Scanning Calorimetry Study †

Feten Abbassi; Cécile Galanth; Mohamed Amiche; Kazuko Saito; Christophe Piesse; Loussiné Zargarian; Khaled Hani; Pierre Nicolas; Olivier Lequin; Ali Ladram

Temporin-SHa and temporin-SHc are 13 residue long antimicrobial peptides from frog skin that have similar sequences but differ markedly in their membrane-damaging properties. Temporin-SHa contains a single basic lysine residue and has a unique antimicrobial spectrum of action among temporins, being very potent against Gram-positive and Gram-negative bacteria, yeasts, fungi, and protozoa. Temporin-SHc, which contains a single basic histidine residue, is inactive against Gram-negative bacteria, has a reduced efficacy against Gram-positive bacteria, but is still active against yeasts and fungi. Temporin-SHb, with no basic residue, has no antimicrobial activity. The three-dimensional structures of the peptides bound to SDS micelles were analyzed by CD and NMR spectroscopy combined with restrained molecular dynamics calculations. The peptides adopt well-defined amphipathic alpha-helical structures extending from residue 3 to residue 12, when bound to SDS micelles. The structures are stabilized by extensive interactions between aliphatic and aromatic side chains on the nonpolar face. Relaxation enhancements caused by paramagnetic probes showed that the peptides adopt nearly parallel orientations to the micelle surface and do not deeply penetrate into the micelle. The interaction of the peptides with model membranes was investigated by differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles and membrane-permeabilization assays on calcein-loaded large unilamellar vesicles. Calorimetric data indicated that both temporin-SHa and -SHc reside at the hydrocarbon core-water interface of the anionic lipid bilayer but interact with anionic bilayers in a very different manner. This suggests that the charge-induced activity of temporins-SH for bacterial cells is due to changes in the membrane-disturbing mechanism of the bound peptides.


Biochimie | 2013

Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide

Feten Abbassi; Zahid Raja; Bruno Oury; Elodie Gazanion; Christophe Piesse; Denis Sereno; Pierre Nicolas; Thierry Foulon; Ali Ladram

Temporins are a family of short antimicrobial peptides (8-17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLF(amide)), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins.


PLOS ONE | 2013

Structure, Antimicrobial Activities and Mode of Interaction with Membranes of Bovel Phylloseptins from the Painted-Belly Leaf Frog, Phyllomedusa sauvagii

Zahid Raja; Sonia André; Christophe Piesse; Denis Sereno; Pierre Nicolas; Thierry Foulon; Bruno Oury; Ali Ladram

Transcriptomic and peptidomic analysis of skin secretions from the Painted-belly leaf frog Phyllomedusa sauvagii led to the identification of 5 novel phylloseptins (PLS-S2 to -S6) and also of phylloseptin-1 (PSN-1, here renamed PLS-S1), the only member of this family previously isolated in this frog. Synthesis and characterization of these phylloseptins revealed differences in their antimicrobial activities. PLS-S1, -S2, and -S4 (79–95% amino acid sequence identity; net charge  = +2) were highly potent and cidal against Gram-positive bacteria, including multidrug resistant S. aureus strains, and killed the promastigote stage of Leishmania infantum, L. braziliensis and L. major. By contrast, PLS-S3 (95% amino acid identity with PLS-S2; net charge  = +1) and -S5 (net charge  = +2) were found to be almost inactive against bacteria and protozoa. PLS-S6 was not studied as this peptide was closely related to PLS-S1. Differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles combined with circular dichroism spectroscopy and membrane permeabilization assays on bacterial cells indicated that PLS-S1, -S2, and -S4 are structured in an amphipathic α-helix that disrupts the acyl chain packing of anionic lipid bilayers. As a result, regions of two coexisting phases could be formed, one phase rich in peptide and the other lipid-rich. After reaching a threshold peptide concentration, the disruption of lipid packing within the bilayer may lead to local cracks and disintegration of the microbial membrane. Differences in the net charge, α-helical folding propensity, and/or degree of amphipathicity between PLS-S1, -S2 and -S4, and between PLS-S3 and -S5 appear to be responsible for their marked differences in their antimicrobial activities. In addition to the detailed characterization of novel phylloseptins from P. sauvagii, our study provides additional data on the previously isolated PLS-S1 and on the mechanism of action of phylloseptins.


ACS Chemical Biology | 2015

Structure-Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity.

Sonia André; Shannon K. Washington; Emily Darby; Marvin M. Vega; Ari D. Filip; Nathaniel S. Ash; Katy A. Muzikar; Christophe Piesse; Thierry Foulon; Daniel J. O'Leary; Ali Ladram

Short antimicrobial peptides represent attractive compounds for the development of new antibiotic agents. Previously, we identified an ultrashort hydrophobic and phenylalanine-rich peptide, called temporin-SHf, representing the smallest natural amphibian antimicrobial peptide known to date. Here, we report on the first structure-activity relationship study of this peptide. A series of temporin-SHf derivatives containing insertion of a basic arginine residue as well as residues containing neutral hydrophilic (serine and α-hydroxymethylserine) and hydrophobic (α-methyl phenylalanine and p-(t)butyl phenylalanine) groups were designed to improve the antimicrobial activity, and their α-helical structure was investigated by circular dichroism and nuclear magnetic resonance spectroscopy. Three compounds were found to display higher antimicrobial activity with the ability to disrupt (permeabilization/depolarization) the bacterial membrane while retaining the nontoxic character of the parent peptide toward rat erythrocytes and human cells (THP-1 derived macrophages and HEK-293). Antimicrobial assays were carried out to explore the influence of serum and physiological salt concentration on peptide activity. Analogs containing d-amino acid residues were also tested. Our study revealed that [p-(t)BuF(2), R(5)]SHf is an attractive ultrashort candidate that is highly potent (bactericidal) against Gram-positive bacteria (including multidrug resistant S. aureus) and against a wider range of clinically interesting Gram-negative bacteria than temporin-SHf, and also active at physiological salt concentrations and in 30% serum.


The FASEB Journal | 2016

ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2-dependent migration

Constance Auvynet; Camille Baudesson de Chanville; Patricia Hermand; Karim Dorgham; Christophe Piesse; Charlotte Pouchy; Ludovic Carlier; Lucie Poupel; Sandrine Barthélémy; Virginie Felouzis; Claire Lacombe; Sandrine Sagan; Sylvain Chemtob; Christiane Quiniou; Benoît L. Salomon; Philippe Deterre; Florian Sennlaub; Christophe Combadière

CC chemokine receptor type 2 (CCR2) is a key molecule in inflammatory diseases and is an obvious drug target for the treatment of inflammation. A number of nonpeptidic, competitive CCR2 antagonists have been developed, but none has yet been approved for clinical use. Our aim was to identify a short peptide that showed allosteric antagonism against human and mouse CCR2. On the basis of sequence analysis and 3‐dimensional modeling, we identified an original 7‐d‐amino acid peptidic CCR2 inhibitor that we have called extracellular loop 1 inverso (ECL1i), d(LGTFLKC). In vitro, ECL1i selectively and potently inhibits CC chemokine ligand type 2 (CCL2)‐triggered chemotaxis (IC50, 2 μM) but no other conventional CCL2‐associated events. We used the classic competitive CCR2 antagonist, BMS22 {2‐[(isopropylaminocarbonyl)amino]‐N‐[2‐[[cis‐2‐[[4‐(methylthio)benzoyl] amino]cyclohexyl]amino]‐2‐oxoethyl]‐5‐(trifluoromethyl)benzamide}, as positive control and inhibited CCL2‐dependent chemotaxis with an IC50 of 18 nM. As negative control, we used a peptide with the same composition as ECL1i, but in a different sequence, d(FKLTLCG). In vivo, ECL1i (4 mg/kg) interfered with CCR2‐positive cell recruitment and attenuated disease progression in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. This study establishes ECL1i as the first allosteric inhibitor of CCR2 with functional selectivity. ECL1i is a promising new agent in therapeutic development, and it may, by its selective effect, increase our understanding of CCR2 signaling pathways and functions.—Auvynet, C., Baudesson de Chanville, C., Hermand, P., Dorgham, K., Piesse, C., Pouchy, C., Carlier, L., Poupel, L., Barthélémy, S., Felouzis, V., Lacombe, C., Sagan, S., Chemtob, S., Quiniou, C., Salomon, B., Deterre, P., Sennlaub, F., Combadière, C. ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2‐dependent migration. FASEB J. 30, 2370–2381 (2016). www.fasebj.org


Biochemical Journal | 2015

The sequence Pro295–Thr311 of the hinge region of oestrogen receptor α is involved in ERK1/2 activation via GPR30 in leiomyoma cells

Denis Leiber; Fabienne Burlina; Cillian Byrne; Philippe Robin; Christophe Piesse; Lucie Gonzalez; Guy Leclercq; Zahra Tanfin; Yves Jacquot

The ERα (oestrogen receptor α)-derived peptide ERα17p activates rapid signalling events in breast carcinoma cells under steroid-deprived conditions. In the present study, we investigated its effects in ELT3 leiomyoma cells under similar conditions. We show that it activates ERK1/2 (extracellular-signal-regulated kinase 1/2), the Gαi protein, the trans-activation of EGFR (epidermal growth factor receptor) and, finally, cell proliferation. It is partially internalized in cells and induces membrane translocation of β-arrestins. The activation of ERK1/2 is abolished by the GPR30 (G-protein-coupled receptor 30) antagonist G15 and GPR30 siRNA. When ERα is down-regulated by prolonged treatment with E2 (oestradiol) or specific ERα siRNA, the peptide response is blunted. Thus the simultaneous presence of GPR30 and ERα is required for the action of ERα17p. In addition, its PLM sequence, which interferes with the formation of the ERα-calmodulin complex, appears to be requisite for the phosphorylation of ERK1/2 and cell proliferation. Hence ERα17p is, to our knowledge, the first known peptide targeting ERα-GPR30 membrane cross-talk and the subsequent receptor-mediated biological effects.


Journal of Medicinal Chemistry | 2015

Pachymodulin, a new functional formyl peptide receptor 2 peptidic ligand isolated from frog skin has Janus-like immunomodulatory capacities.

Claire Lacombe; Christophe Piesse; Sandrine Sagan; Christophe Combadière; Yvonne Rosenstein; Constance Auvynet

Recruitment of leukocytes is essential to fight infections or to heal injuries; however, excessive and/or prolonged responses favor the development of major inflammatory pathologies, such as cardiovascular or neurodegenerative diseases. Thus, it is of great interest to seek novel compounds that can regulate leukocyte recruitment depending on the degree of inflammation. We have isolated and characterized, by different chromatographic techniques, mass spectrometry, and Edman sequencing, a new hexapeptide (SSLSKL) from the Mexican frog Pachymedusa dacnicolor, which we named pachymodulin. In vitro, pachymodulin promotes the migration of leukocytes through the binding and activation of the human and mouse N-formyl peptide receptor 2 (huFPR2). In vivo, it exhibits opposite biological activities: under homeostatic conditions, pachymodulin induces the recruitment of leukocytes, whereas under inflammatory conditions, it inhibits this process. Therefore, pachymodulin represents an interesting template in the quest to design new immunomodulatory drugs in the therapy of immune-related diseases.


PLOS ONE | 2018

Peptidoglycan potentiates the membrane disrupting effect of the carboxyamidated form of DMS-DA6, a Gram-positive selective antimicrobial peptide isolated from Pachymedusa dacnicolor skin

Sébastien Cardon; Emmanuelle Sachon; Ludovic Carlier; Thierry Drujon; Astrid Walrant; Estefanía Alemán-Navarro; Verónica Martínez-Osorio; Dominique Guianvarc'h; Sandrine Sagan; Yannick Fleury; Rodrigue Marquant; Christophe Piesse; Yvonne Rosenstein; Constance Auvynet; Claire Lacombe

The occurrence of nosocomial infections has been on the rise for the past twenty years. Notably, infections caused by the Gram-positive bacteria Staphylococcus aureus represent a major clinical problem, as an increase in antibiotic multi-resistant strains has accompanied this rise. There is thus a crucial need to find and characterize new antibiotics against Gram-positive bacteria, and against antibiotic-resistant strains in general. We identified a new dermaseptin, DMS-DA6, produced by the skin of the Mexican frog Pachymedusa dacnicolor, with specific antibacterial activity against Gram-positive bacteria. This peptide is particularly effective against two multiple drug-resistant strains Enterococcus faecium BM4147 and Staphylococcus aureus DAR5829, and has no hemolytic activity. DMS-DA6 is naturally produced with the C-terminal carboxyl group in either the free or amide forms. By using Gram-positive model membranes and different experimental approaches, we showed that both forms of the peptide adopt an α-helical fold and have the same ability to insert into, and to disorganize a membrane composed of anionic lipids. However, the bactericidal capacity of DMS-DA6-NH2 was consistently more potent than that of DMS-DA6-OH. Remarkably, rather than resulting from the interaction with the negatively charged lipids of the membrane, or from a more stable conformation towards proteolysis, the increased capacity to permeabilize the membrane of Gram-positive bacteria of the carboxyamidated form of DMS-DA6 was found to result from its enhanced ability to interact with peptidoglycan.


PLOS ONE | 2016

Identification of the Single Immunodominant Region of the Native Human CC Chemokine Receptor 6 Recognized by Mouse Monoclonal Antibodies

Karim Dorgham; Cécile Dejou; Christophe Piesse; Guy Gorochov; Jérôme Pène; Hans Yssel

Chemokines and their receptors play an important role in cell trafficking and recruitment. The CCR6 chemokine receptor, selectively expressed on leukocyte populations, has been shown to play a deleterious role in the pathogenesis of various chronic inflammatory diseases and, as such, may constitute a prime target in the development of immunotherapeutic treatment. However, to date no neutralizing mouse monoclonal antibodies (mAbs) specific for this chemokine receptor have been reported, whereas information on small molecules capable of interfering with the interaction of CCR6 and its ligands is scant. Here, we report the failure to generate neutralizing mouse mAbs specific for human (hu)CCR6. Immunization of mice with peptides mimicking extracellular domains, potentially involved in CCR6 function, failed to induce Abs reactive with the native receptor. Although the use of NIH-3T3 cells expressing huCCR6 resulted in the isolation of mAbs specific for this receptor, they were not able to block the interaction between huCCR6 and huCCL20. Investigation of the anti-huCCR6 mAbs generated in the present study, as well as those commercially available, show that all mAbs invariably recognize a unique, non-neutralizing, immunodominant region in the first part of its N-terminal domain. Together, these results indicate that the generation of potential neutralizing anti-huCCR6 mAbs in the mouse is unlikely to succeed and that alternative techniques, such as the use of other animal species for immunization, might constitute a better approach to generate such a potentially therapeutic tool for the treatment of inflammatory disease.

Collaboration


Dive into the Christophe Piesse's collaboration.

Top Co-Authors

Avatar

Pierre Nicolas

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Thierry Foulon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandrine Sagan

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludovic Carlier

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Olivier Lequin

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Yvonne Rosenstein

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Zahid Raja

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge