Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Bristow is active.

Publication


Featured researches published by Christopher A. Bristow.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Nature | 2011

A cis-regulatory map of the Drosophila genome

Nicolas Nègre; Christopher D. Brown; Lijia Ma; Christopher A. Bristow; Steven W. Miller; Ulrich Wagner; Pouya Kheradpour; Matthew L. Eaton; Paul Michael Loriaux; Rachel Sealfon; Zirong Li; Haruhiko Ishii; Rebecca Spokony; Jia Chen; Lindsay Hwang; Chao Cheng; Richard P. Auburn; Melissa B. Davis; Marc Domanus; Parantu K. Shah; Carolyn A. Morrison; Jennifer Zieba; Sarah Suchy; Lionel Senderowicz; Alec Victorsen; Nicholas A. Bild; A. Jason Grundstad; David Hanley; David M. MacAlpine; Mattias Mannervik

Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide has successfully identified specific subtypes of regulatory elements. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements, chromatin states, transcription factor binding sites, RNA polymerase II regulation and insulator elements; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Characterization of HPV and host genome interactions in primary head and neck cancers

Michael Parfenov; Chandra Sekhar Pedamallu; Nils Gehlenborg; Samuel S. Freeman; Ludmila Danilova; Christopher A. Bristow; Semin Lee; Angela Hadjipanayis; Elena Ivanova; Matthew D. Wilkerson; Alexei Protopopov; Lixing Yang; Sahil Seth; Xingzhi Song; Jiabin Tang; Xiaojia Ren; Jianhua Zhang; Angeliki Pantazi; Netty Santoso; Andrew W. Xu; Harshad S. Mahadeshwar; David A. Wheeler; Robert I. Haddad; Joonil Jung; Akinyemi I. Ojesina; Natalia Issaeva; Wendell G. Yarbrough; D. Neil Hayes; Jennifer R. Grandism; Adel K. El-Naggar

Significance A significant proportion of head and neck cancer is driven by human papillomavirus (HPV) infection, and the expression of viral oncogenes is involved in the development of these tumors. However, the role of HPV integration in primary tumors beyond increasing the expression of viral oncoproteins is not understood. Here, we describe how HPV integration impacts the host genome by amplification of oncogenes and disruption of tumor suppressors as well as driving inter- and intrachromosomal rearrangements. Tumors that do and do not have HPV integrants display distinct gene expression profiles and DNA methylation patterns, which further support the view that the mechanisms by which tumors with integrated and nonintegrated HPV arise are distinct. Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.


Genome Research | 2012

Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks

Daniel Marbach; Sushmita Roy; Ferhat Ay; Patrick E. Meyer; Rogerio Candeias; Tamer Kahveci; Christopher A. Bristow; Manolis Kellis

Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein-protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level.


Genome Biology | 2013

Spatial expression of transcription factors in Drosophila embryonic organ development.

Ann S. Hammonds; Christopher A. Bristow; William W. Fisher; Richard Weiszmann; Siqi Wu; Volker Hartenstein; Manolis Kellis; Bin Yu; Erwin Frise; Susan E. Celniker

BackgroundSite-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown.ResultsWe present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study.ConclusionsWe produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system.


Cancer Cell | 2015

Telomere Dysfunction Drives Aberrant Hematopoietic Differentiation and Myelodysplastic Syndrome

Simona Colla; Derrick Sek Tong Ong; Yamini Ogoti; Matteo Marchesini; Nipun A. Mistry; Karen Clise-Dwyer; Sonny A. Ang; Paola Storti; Andrea Viale; Nicola Giuliani; Kathryn Ruisaard; Irene Ganan Gomez; Christopher A. Bristow; Marcos R. Estecio; David C. Weksberg; Yan Wing Ho; Baoli Hu; Giannicola Genovese; Piergiorgio Pettazzoni; Asha S. Multani; Shan Jiang; Sujun Hua; Michael C. Ryan; Alessandro Carugo; Luigi Nezi; Yue Wei; Hui Yang; Marianna D’Anca; Li Zhang; Sarah Gaddis

Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation.


Genes & Development | 2017

PRKCI promotes immune suppression in ovarian cancer

Sharmistha Sarkar; Christopher A. Bristow; Prasenjit Dey; Kunal Rai; Ruth Perets; Alejandra Ramirez-Cardenas; Shruti Malasi; Emmet Huang-Hobbs; Monika Haemmerle; Sherry Y. Wu; Michael McGuire; Alexei Protopopov; Shan Jiang; Joyce Liu; Michelle S. Hirsch; Qing Chang; Alexander J. Lazar; Anil K. Sood; Ronny Drapkin; Ronald A. DePinho; Giulio Draetta; Lynda Chin

A key feature of high-grade serous ovarian carcinoma (HGSOC) is frequent amplification of the 3q26 locus harboring PRKC-ι (PRKCI). Here, we show that PRKCI is also expressed in early fallopian tube lesions, called serous tubal intraepithelial carcinoma. Transgenic mouse studies establish PRKCI as an ovarian cancer-specific oncogene. Mechanistically, we show that the oncogenic activity of PRKCI relates in part to the up-regulation of TNFα to promote an immune-suppressive tumor microenvironment characterized by an abundance of myeloid-derived suppressor cells and inhibition of cytotoxic T-cell infiltration. Furthermore, system-level and functional analyses identify YAP1 as a downstream effector in tumor progression. In human ovarian cancers, high PRKCI expression also correlates with high expression of TNFα and YAP1 and low infiltration of cytotoxic T cells. The PRKCI-YAP1 regulation of the tumor immunity provides a therapeutic strategy for highly lethal ovarian cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2017

PAF promotes stemness and radioresistance of glioma stem cells.

Derrick Sek Tong Ong; Baoli Hu; Yan Wing Ho; Charles Etienne Gabriel Sauvé; Christopher A. Bristow; Qianghu Wang; Asha S. Multani; Peiwen Chen; Luigi Nezi; Shan Jiang; Claire Elizabeth Gorman; Marta Moreno Monasterio; Dimpy Koul; Matteo Marchesini; Simona Colla; Eun-Jung Jin; Erik P. Sulman; Denise J. Spring; W. K.A. Yung; Roel G.W. Verhaak; Lynda Chin; Y. Alan Wang; Ronald A. DePinho

Significance Glioblastoma multiforme (GBM) is uniformly lethal and shows resistance to all forms of therapy. Glioma stem cells (GSCs) have been shown to support GBM maintenance and exhibit enhanced resistance to ionizing radiation, a cornerstone of GBM therapy. This study establishes that proliferating cell nuclear antigen-associated factor (PAF) depletion profoundly reduces GSC frequency and tumorigenicity, in part, by down-regulating DNA replication and pyrimidine metabolism. Moreover, PAF depletion impairs error-prone DNA translesion synthesis (TLS) and enhances sensitivity of GSCs to radiation treatment. Pharmacological impairment of DNA replication and TLS diminished GSC maintenance and radioresistance, illuminating a potential GBM treatment strategy of combined TLS inhibition and radiation therapy. An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor (PAF) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM).


Nature Medicine | 2018

An inhibitor of oxidative phosphorylation exploits cancer vulnerability

Jennifer R. Molina; Yuting Sun; Marina Protopopova; Sonal Gera; Madhavi Bandi; Christopher A. Bristow; Timothy McAfoos; Pietro Morlacchi; Jeffrey Ackroyd; Ahmed Noor A. Agip; Gheath Alatrash; John M. Asara; Jennifer Bardenhagen; Caroline Carrillo; Christopher Carroll; Edward F. Chang; Stefan O. Ciurea; Jason B. Cross; Barbara Czako; Angela K. Deem; Naval Daver; John F. de Groot; Jian Wen Dong; Ningping Feng; Guang Gao; Mary Geck Do; Jennifer Greer; Virginia Giuliani; Jing Han; Lina Han

Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.A new inhibitor targeting the mitochondrial complex I shows antitumor activity in preclinical models of acute myeloid leukemia and glioblastoma relying on oxidative phosphorylation.


Molecular Cancer Research | 2016

Abstract A65: IACS-10759: A novel OXPHOS inhibitor that selectively kills tumors with metabolic vulnerabilities

Marina Protopopova; Madhavi Bandi; Yuting Sun; Jennifer Bardenhagen; Christopher A. Bristow; Christopher Carroll; Edward F. Chang; Ningping Feng; Mary Geck Do; Jennifer Greer; Marina Konopleva; Polina Matre; Zhijun Kang; Gang Liu; Florian Muller; Timothy Lofton; Timothy McAfoos; Melinda Smith; Jay Theroff; Jing Han; Yuanqing Wu; Lynda Chin; Giulio Draetta; Philip Jones; Carlo Toniatti; M. Emilia Di Francesco; Joseph R. Marszalek

Tumor cells normally depend on both glycolysis and oxidative phosphorylation (OXPHOS) to provide the energy and macromolecule building blocks for rapid growth. Metabolic vulnerabilities caused by inactivation of glycolysis render tumor cells highly dependent on OXPHOS, and represent a therapeutic opportunity. Through an extensive medicinal chemistry campaign, we have identified IACS-10759 as a potent inhibitor of complex I of OXPHOS. IACS-10759 effectively inhibits ATP production and oxygen consumption in isolated mitochondria, and inhibits the conversion of NADH to NAD+ in immunoprecipitated complex I in low nM range. The exact subunit that IACS-10759 binds to is under investigation. Importantly, IACS-10759 is orally bioavailable with excellent physicochemical properties in preclinical species, and shows significant efficacy in multiple tumor indications both in vitro and in vivo. Specifically, in a glycolysis-deficient xenograft model, IACS-10759 causes robust tumor regression, but has no effect in the same model when glycolysis is restored. In addition, in AML where tumor cells have been shown to be highly OXPHOS-dependent, IACS-10759 robustly suppresses cell growth and induces apoptosis in both primary AML samples and cell lines in vitro, but not in normal patient-derived bone marrow cells. Significantly, IACS-10759 extends median survival by over 50 days in an AML orthotopic xenograft model. Furthermore, IACS-10759 also shows selective efficacy in other cell line panels including pancreatic cancer, non-small cell lung cancer and colorectal cancer, and has synergism with glycolysis inhibitors. In light of these results, we are currently performing IND enabling studies for IACS-10759, with first-in-human studies targeted for fourth quarter of 2015. Citation Format: Marina Protopopova, Madhavi Bandi, Yuting Sun, Jennifer Bardenhagen, Christopher Bristow, Christopher Carroll, Edward Chang, Ningping Feng, Jason Gay, Mary Geck Do, Jennifer Greer, Marina Konopleva, Polina Matre, Zhijun Kang, Gang Liu, Florian Muller, Timothy Lofton, Timothy McAfoos, Melinda Smith, Jay Theroff, Jing Han, Yuanqing Wu, Lynda Chin, Giulio Draetta, Philip Jones, Carlo Toniatti, M. Emilia Di Francesco, Joseph R. Marszalek. IACS-10759: A novel OXPHOS inhibitor that selectively kills tumors with metabolic vulnerabilities. [abstract]. In: Proceedings of the AACR Special Conference: Metabolism and Cancer; Jun 7-10, 2015; Bellevue, WA. Philadelphia (PA): AACR; Mol Cancer Res 2016;14(1_Suppl):Abstract nr A65.

Collaboration


Dive into the Christopher A. Bristow's collaboration.

Top Co-Authors

Avatar

Giulio Draetta

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joseph R. Marszalek

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Timothy P. Heffernan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sahil Seth

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alessandro Carugo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madhavi Bandi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ningping Feng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Timothy McAfoos

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carlo Toniatti

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge