Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph R. Marszalek is active.

Publication


Featured researches published by Joseph R. Marszalek.


Bioorganic & Medicinal Chemistry Letters | 2005

Identification of potent and selective MMP-13 inhibitors.

Alessia Petrocchi; Elisabetta Leo; Naphtali Reyna; Matthew M. Hamilton; Xi Shi; Connor A. Parker; Faika Mseeh; Jennifer Bardenhagen; Paul G. Leonard; Jason B. Cross; Sha Huang; Yongying Jiang; Mario G. Cardozo; Giulio Draetta; Joseph R. Marszalek; Carlo Toniatti; Philip Jones; Richard T. Lewis

Structure based design of a novel class of aminopyrimidine MTH1 (MutT homolog 1) inhibitors is described. Optimization led to identification of IACS-4759 (compound 5), a sub-nanomolar inhibitor of MTH1 with excellent cell permeability and good metabolic stability in microsomes. This compound robustly inhibited MTH1 activity in cells and proved to be an excellent tool for interrogation of the utility of MTH1 inhibition in the context of oncology.


Cancer Research | 2015

The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies

Bhavatarini Vangamudi; Thomas A. Paul; Parantu K. Shah; Maria Kost-Alimova; Lisa Nottebaum; Xi Shi; Yanai Zhan; Elisabetta Leo; Harshad S. Mahadeshwar; Alexei Protopopov; Andrew Futreal; Trang Tieu; Mike Peoples; Timothy P. Heffernan; Joseph R. Marszalek; Carlo Toniatti; Alessia Petrocchi; Dominique Verhelle; Dafydd R. Owen; Giulio Draetta; Philip Jones; Wylie Solang Palmer; Shikhar Sharma; Jannik N. Andersen

The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.


Blood | 2015

Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy.

Byung Sik Cho; Zhihong Zeng; Hong Mu; Zhiqiang Wang; Sergej Konoplev; Teresa McQueen; Marina Protopopova; Jorge Cortes; Joseph R. Marszalek; Sheng Bin Peng; Wencai Ma; R. Eric Davis; Donald Thornton; Michael Andreeff; Marina Konopleva

Targeting the stromal cell-derived factor 1α (SDF-1α)/C-X-C chemokine receptor type 4 (CXCR4) axis has been shown to be a promising therapeutic approach to overcome chemoresistance in acute myeloid leukemia (AML). We investigated the antileukemia efficacy of a novel peptidic CXCR4 antagonist, LY2510924, in preclinical models of AML. LY2510924 rapidly and durably blocked surface CXCR4 and inhibited stromal cell-derived factor 1 (SDF-1)α-induced chemotaxis and prosurvival signals of AML cells at nanomolar concentrations more effectively than the small-molecule CXCR4 antagonist AMD3100. In vitro, LY2510924 chiefly inhibited the proliferation of AML cells with little induction of cell death and reduced protection against chemotherapy by stromal cells. In mice with established AML, LY2510924 caused initial mobilization of leukemic cells into the circulation followed by reduction in total tumor burden. LY2510924 had antileukemia effects as monotherapy as well as in combination with chemotherapy. Gene expression profiling of AML cells isolated from LY2510924-treated mice demonstrated changes consistent with loss of SDF-1α/CXCR4 signaling and suggested reduced proliferation and induction of differentiation, which was proved by showing the attenuation of multiple prosurvival pathways such as PI3K/AKT, MAPK, and β-catenin and myeloid differentiation in vivo. Effective disruption of the SDF-1α/CXCR4 axis by LY2510924 may translate into effective antileukemia therapy in future clinical applications.


Clinical Cancer Research | 2016

Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models

Juliana Benito; Marc S. Ramirez; Niki Zacharias Millward; Juliana Velez; Karine Harutyunyan; Hongbo Lu; Yue Xi Shi; Polina Matre; Rodrigo Jacamo; Helen Ma; Sergej Konoplev; Teresa McQueen; Andrei Volgin; Marina Protopopova; Hong Mu; Jaehyuk Lee; Pratip Bhattacharya; Joseph R. Marszalek; R. Eric Davis; James A. Bankson; Jorge Cortes; Charles P. Hart; Michael Andreeff; Marina Konopleva

Purpose: To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Experimental Design: Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Results: Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a “hypoxia index” compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo. In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. Conclusions: These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. Clin Cancer Res; 22(7); 1687–98. ©2015 AACR.


Epigenetics & Chromatin | 2015

Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery

Yanai Zhan; Maria Kost-Alimova; Xi Shi; Elisabetta Leo; Jennifer Bardenhagen; Hannah E. Shepard; Srikanth Appikonda; Bhavatarini Vangamudi; Shuping Zhao; Trang Tieu; Shiming Jiang; Timothy P. Heffernan; Joseph R. Marszalek; Carlo Toniatti; Giulio Draetta; Jessica K. Tyler; Michelle Craig Barton; Philip Jones; Wylie Solang Palmer; Mary K. Geck Do; Jannik N. Andersen

BackgroundProteins that ‘read’ the histone code are central elements in epigenetic control and bromodomains, which bind acetyl-lysine motifs, are increasingly recognized as potential mediators of disease states. Notably, the first BET bromodomain-based therapies have entered clinical trials and there is a broad interest in dissecting the therapeutic relevance of other bromodomain-containing proteins in human disease. Typically, drug development is facilitated and expedited by high-throughput screening, where assays need to be sensitive, robust, cost-effective and scalable. However, for bromodomains, which lack catalytic activity that otherwise can be monitored (using classical enzymology), the development of cell-based, drug-target engagement assays has been challenging. Consequently, cell biochemical assays have lagged behind compared to other protein families (e.g., histone deacetylases and methyltransferases).ResultsHere, we present a suite of novel chromatin and histone-binding assays using AlphaLISA, in situ cell extraction and fluorescence-based, high-content imaging. First, using TRIM24 as an example, the homogenous, bead-based AlphaScreen technology was modified from a biochemical peptide-competition assay to measure binding of the TRIM24 bromodomain to endogenous histone H3 in cells (AlphaLISA). Second, a target agnostic, high-throughput imaging platform was developed to quantify the ability of chemical probes to dissociate endogenous proteins from chromatin/nuclear structures. While overall nuclear morphology is maintained, the procedure extracts soluble, non-chromatin-bound proteins from cells with drug-target displacement visualized by immunofluorescence (IF) or microscopy of fluorescent proteins. Pharmacological evaluation of these assays cross-validated their utility, sensitivity and robustness. Finally, using genetic and pharmacological approaches, we dissect domain contribution of TRIM24, BRD4, ATAD2 and SMARCA2 to chromatin binding illustrating the versatility/utility of the in situ cell extraction platform.ConclusionsIn summary, we have developed two novel complementary and cell-based drug-target engagement assays, expanding the repertoire of pharmacodynamic assays for bromodomain tool compound development. These assays have been validated through a successful TRIM24 bromodomain inhibitor program, where a micromolar lead molecule (IACS-6558) was optimized using cell-based assays to yield the first single-digit nanomolar TRIM24 inhibitor (IACS-9571). Altogether, the assay platforms described herein are poised to accelerate the discovery and development of novel chemical probes to deliver on the promise of epigenetic-based therapies.


Nature Medicine | 2018

An inhibitor of oxidative phosphorylation exploits cancer vulnerability

Jennifer R. Molina; Yuting Sun; Marina Protopopova; Sonal Gera; Madhavi Bandi; Christopher A. Bristow; Timothy McAfoos; Pietro Morlacchi; Jeffrey Ackroyd; Ahmed Noor A. Agip; Gheath Alatrash; John M. Asara; Jennifer Bardenhagen; Caroline Carrillo; Christopher Carroll; Edward F. Chang; Stefan O. Ciurea; Jason B. Cross; Barbara Czako; Angela K. Deem; Naval Daver; John F. de Groot; Jian Wen Dong; Ningping Feng; Guang Gao; Mary Geck Do; Jennifer Greer; Virginia Giuliani; Jing Han; Lina Han

Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.A new inhibitor targeting the mitochondrial complex I shows antitumor activity in preclinical models of acute myeloid leukemia and glioblastoma relying on oxidative phosphorylation.


Nature Medicine | 2018

Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer

Yonathan Lissanu Deribe; Yuting Sun; Christopher Terranova; Fatima Khan; Juan Martinez-Ledesma; Guang Gao; Robert A. Mullinax; Tin Khor; Ningping Feng; Yu Hsi Lin; Chia Chin Wu; Claudia Reyes; Qian Peng; Frederick Robinson; Akira Inoue; Veena Kochat; Chang Gong Liu; John M. Asara; Cesar A. Moran; Florian Muller; Jing Wang; Bingliang Fang; Vali Papadimitrakopoulou; Ignacio I. Wistuba; Kunal Rai; Joseph R. Marszalek; P. Andrew Futreal

Lung cancer is a devastating disease that remains a top cause of cancer mortality. Despite improvements with targeted and immunotherapies, the majority of patients with lung cancer lack effective therapies, underscoring the need for additional treatment approaches. Genomic studies have identified frequent alterations in components of the SWI/SNF chromatin remodeling complex including SMARCA4 and ARID1A. To understand the mechanisms of tumorigenesis driven by mutations in this complex, we developed a genetically engineered mouse model of lung adenocarcinoma by ablating Smarca4 in the lung epithelium. We demonstrate that Smarca4 acts as a bona fide tumor suppressor and cooperates with p53 loss and Kras activation. Gene expression analyses revealed the signature of enhanced oxidative phosphorylation (OXPHOS) in SMARCA4 mutant tumors. We further show that SMARCA4 mutant cells have enhanced oxygen consumption and increased respiratory capacity. Importantly, SMARCA4 mutant lung cancer cell lines and xenograft tumors have marked sensitivity to inhibition of OXPHOS by a novel small molecule, IACS-010759, that is under clinical development. Mechanistically, we show that SMARCA4-deficient cells have a blunted transcriptional response to energy stress creating a therapeutically exploitable synthetic lethal interaction. These findings provide the mechanistic basis for further development of OXPHOS inhibitors as therapeutics against SWI/SNF mutant tumors.SMARCA4 loss in non-small-cell lung cancer creates a metabolic dependency on oxidative phosphorylation that can be targeted using a new small-molecule inhibitor.


JCI insight | 2018

Generation and testing of clinical-grade exosomes for pancreatic cancer

Mayela Mendt; Sushrut Kamerkar; Hikaru Sugimoto; Kathleen M. McAndrews; Chia-Chin Wu; Mihai Gagea; Sujuan Yang; Elena V. Rodriges Blanko; Qian Peng; Xiaoyan Ma; Joseph R. Marszalek; Anirban Maitra; Cassian Yee; Katayoun Rezvani; Elizabeth J. Shpall; Valerie S. LeBleu; Raghu Kalluri

Exosomes are extracellular vesicles produced by all cells with a remarkable ability to efficiently transfer genetic material, including exogenously loaded siRNA, to cancer cells. Here, we report on a bioreactor-based, large-scale production of clinical-grade exosomes employing good manufacturing practice (GMP) standards. A standard operating procedure was established to generate engineered exosomes with the ability to target oncogenic Kras (iExosomes). The clinical-grade GMP iExosomes were tested in multiple in vitro and in vivo studies to confirm suppression of oncogenic Kras and an increase in the survival of several mouse models with pancreatic cancer. We perform studies to determine the shelf life, biodistribution, toxicology profile, and efficacy in combination with chemotherapy to inform future clinical testing of GMP iExosomes. Collectively, this report illustrates the process and feasibility of generating clinical-grade exosomes for various therapies of human diseases.


Molecular Cancer Research | 2016

Abstract A65: IACS-10759: A novel OXPHOS inhibitor that selectively kills tumors with metabolic vulnerabilities

Marina Protopopova; Madhavi Bandi; Yuting Sun; Jennifer Bardenhagen; Christopher A. Bristow; Christopher Carroll; Edward F. Chang; Ningping Feng; Mary Geck Do; Jennifer Greer; Marina Konopleva; Polina Matre; Zhijun Kang; Gang Liu; Florian Muller; Timothy Lofton; Timothy McAfoos; Melinda Smith; Jay Theroff; Jing Han; Yuanqing Wu; Lynda Chin; Giulio Draetta; Philip Jones; Carlo Toniatti; M. Emilia Di Francesco; Joseph R. Marszalek

Tumor cells normally depend on both glycolysis and oxidative phosphorylation (OXPHOS) to provide the energy and macromolecule building blocks for rapid growth. Metabolic vulnerabilities caused by inactivation of glycolysis render tumor cells highly dependent on OXPHOS, and represent a therapeutic opportunity. Through an extensive medicinal chemistry campaign, we have identified IACS-10759 as a potent inhibitor of complex I of OXPHOS. IACS-10759 effectively inhibits ATP production and oxygen consumption in isolated mitochondria, and inhibits the conversion of NADH to NAD+ in immunoprecipitated complex I in low nM range. The exact subunit that IACS-10759 binds to is under investigation. Importantly, IACS-10759 is orally bioavailable with excellent physicochemical properties in preclinical species, and shows significant efficacy in multiple tumor indications both in vitro and in vivo. Specifically, in a glycolysis-deficient xenograft model, IACS-10759 causes robust tumor regression, but has no effect in the same model when glycolysis is restored. In addition, in AML where tumor cells have been shown to be highly OXPHOS-dependent, IACS-10759 robustly suppresses cell growth and induces apoptosis in both primary AML samples and cell lines in vitro, but not in normal patient-derived bone marrow cells. Significantly, IACS-10759 extends median survival by over 50 days in an AML orthotopic xenograft model. Furthermore, IACS-10759 also shows selective efficacy in other cell line panels including pancreatic cancer, non-small cell lung cancer and colorectal cancer, and has synergism with glycolysis inhibitors. In light of these results, we are currently performing IND enabling studies for IACS-10759, with first-in-human studies targeted for fourth quarter of 2015. Citation Format: Marina Protopopova, Madhavi Bandi, Yuting Sun, Jennifer Bardenhagen, Christopher Bristow, Christopher Carroll, Edward Chang, Ningping Feng, Jason Gay, Mary Geck Do, Jennifer Greer, Marina Konopleva, Polina Matre, Zhijun Kang, Gang Liu, Florian Muller, Timothy Lofton, Timothy McAfoos, Melinda Smith, Jay Theroff, Jing Han, Yuanqing Wu, Lynda Chin, Giulio Draetta, Philip Jones, Carlo Toniatti, M. Emilia Di Francesco, Joseph R. Marszalek. IACS-10759: A novel OXPHOS inhibitor that selectively kills tumors with metabolic vulnerabilities. [abstract]. In: Proceedings of the AACR Special Conference: Metabolism and Cancer; Jun 7-10, 2015; Bellevue, WA. Philadelphia (PA): AACR; Mol Cancer Res 2016;14(1_Suppl):Abstract nr A65.


Oncotarget | 2018

Biological and metabolic effects of IACS-010759, an OxPhos inhibitor, on chronic lymphocytic leukemia cells

Hima V. Vangapandu; Brandon Alston; Joshua Morse; Mary Ayres; William G. Wierda; Michael J. Keating; Joseph R. Marszalek; Varsha Gandhi

Blood cells from patients with chronic lymphocytic leukemia (CLL) are replicationally quiescent but transcriptionally, translationally, and metabolically active. Recently, we demonstrated that oxidative phosphorylation (OxPhos) is a predominant pathway in CLL for energy production and is further augmented in the presence of the stromal microenvironment. Importantly, CLL cells from patients with poor prognostic markers showed increased OxPhos. From these data, we theorized that OxPhos can be targeted to treat CLL. IACS-010759, currently in clinical development, is a small-molecule, orally bioavailable OxPhos inhibitor that targets mitochondrial complex I. Treatment of primary CLL cells with IACS-010759 greatly inhibited OxPhos but caused only minor cell death at 24 and 48 h. In the presence of stroma, the drug successfully inhibited OxPhos and diminished intracellular ribonucleotide pools. However, glycolysis and glucose uptake were induced as compensatory mechanisms. To mitigate the upregulated glycolytic flux, we used 2-deoxy-D-glucose in combination with IACS-010759. This combination reduced both OxPhos and glycolysis and induced cell death. Consistent with these data, low-glucose culture conditions sensitized CLL cells to IACS-010759. Collectively, these data suggest that CLL cells adapt to use a different metabolic pathway when OxPhos is inhibited and that targeting both OxPhos and glycolysis pathways is necessary for biological effect.

Collaboration


Dive into the Joseph R. Marszalek's collaboration.

Top Co-Authors

Avatar

Giulio Draetta

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marina Konopleva

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ningping Feng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yuting Sun

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carlo Toniatti

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Bristow

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Timothy P. Heffernan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer Bardenhagen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Madhavi Bandi

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge