Christopher A. Haiman
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher A. Haiman.
The New England Journal of Medicine | 2014
Siddhartha Jaiswal; Jason Flannick; Alisa K. Manning; Peter Grauman; Brenton G. Mar; R. Coleman Lindsley; Craig H. Mermel; Noël P. Burtt; Alejandro Chavez; John M. Higgins; Vladislav Moltchanov; Frank C. Kuo; Michael J. Kluk; Brian E. Henderson; Leena Kinnunen; Heikki A. Koistinen; Claes Ladenvall; Gad Getz; Adolfo Correa; Benjamin F. Banahan; Stacey Gabriel; Sekar Kathiresan; Heather M. Stringham; Mark I. McCarthy; Michael Boehnke; Jaakko Tuomilehto; Christopher A. Haiman; Leif Groop; Gil Atzmon; James G. Wilson
BACKGROUND The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. METHODS We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. RESULTS Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). CONCLUSIONS Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).
Nature Genetics | 2007
Simon N. Stacey; Andrei Manolescu; Patrick Sulem; Thorunn Rafnar; Julius Gudmundsson; Sigurjon A. Gudjonsson; Gisli Masson; Margret Jakobsdottir; Steinunn Thorlacius; Agnar Helgason; Katja K. Aben; Luc J Strobbe; Marjo T Albers-Akkers; Dorine W. Swinkels; Brian E. Henderson; Laurence N. Kolonel; Loic Le Marchand; Esther Millastre; Raquel Andres; Javier Godino; María Dolores García-Prats; Eduardo Polo; Alejandro Tres; Magali Mouy; Jona Saemundsdottir; Valgerdur M. Backman; Larus J. Gudmundsson; Kristleifur Kristjansson; Jon Thor Bergthorsson; Jelena Kostic
Familial clustering studies indicate that breast cancer risk has a substantial genetic component. To identify new breast cancer risk variants, we genotyped approximately 300,000 SNPs in 1,600 Icelandic individuals with breast cancer and 11,563 controls using the Illumina Hap300 platform. We then tested selected SNPs in five replication sample sets. Overall, we studied 4,554 affected individuals and 17,577 controls. Two SNPs consistently associated with breast cancer: ∼25% of individuals of European descent are homozygous for allele A of rs13387042 on chromosome 2q35 and have an estimated 1.44-fold greater risk than noncarriers, and for allele T of rs3803662 on 16q12, about 7% are homozygous and have a 1.64-fold greater risk. Risk from both alleles was confined to estrogen receptor–positive tumors. At present, no genes have been identified in the linkage disequilibrium block containing rs13387042. rs3803662 is near the 5′ end of TNRC9 , a high mobility group chromatin–associated protein whose expression is implicated in breast cancer metastasis to bone.
Nature Genetics | 2007
Christopher A. Haiman; Nick Patterson; Matthew L. Freedman; Simon Myers; Malcolm C. Pike; Alicja Waliszewska; Julie Neubauer; Arti Tandon; Christine Schirmer; Gavin J. McDonald; Steven C Greenway; Daniel O. Stram; Loic Le Marchand; Laurence N. Kolonel; Melissa A. Frasco; David Wong; Loreall Pooler; Kristin Ardlie; Ingrid Oakley-Girvan; Alice S. Whittemore; Kathleen A. Cooney; Esther M. John; Sue A. Ingles; David Altshuler; Brian E. Henderson; David Reich
After the recent discovery that common genetic variation in 8q24 influences inherited risk of prostate cancer, we genotyped 2,973 SNPs in up to 7,518 men with and without prostate cancer from five populations. We identified seven risk variants, five of them previously undescribed, spanning 430 kb and each independently predicting risk for prostate cancer (P = 7.9 × 10−19 for the strongest association, and P < 1.5 × 10−4 for five of the variants, after controlling for each of the others). The variants define common genotypes that span a more than fivefold range of susceptibility to cancer in some populations. None of the prostate cancer risk variants aligns to a known gene or alters the coding sequence of an encoded protein.
Nature Genetics | 2009
Mark Pomerantz; Nasim Ahmadiyeh; Li Jia; Paula Herman; Michael P. Verzi; Harshavardhan Doddapaneni; Christine A. Beckwith; Jennifer A. Chan; Adam Hills; Matthew M. Davis; Keluo Yao; Sarah M. Kehoe; Heinz-Josef Lenz; Christopher A. Haiman; Chunli Yan; Brian E. Henderson; Baruch Frenkel; Jordi Barretina; Adam J. Bass; Josep Tabernero; José Baselga; Meredith M. Regan; J. Robert Manak; Ramesh A. Shivdasani; Gerhard A. Coetzee; Matthew L. Freedman
An inherited variant on chromosome 8q24, rs6983267, is significantly associated with cancer pathogenesis. We present evidence that the region harboring this variant is a transcriptional enhancer, that the alleles of rs6983267 differentially bind transcription factor 7-like 2 (TCF7L2) and that the risk region physically interacts with the MYC proto-oncogene. These data provide strong support for a biological mechanism underlying this non-protein-coding risk variant.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Matthew L. Freedman; Christopher A. Haiman; Nick Patterson; Gavin J. McDonald; Arti Tandon; Alicja Waliszewska; Kathryn L. Penney; Robert Steen; Kristin Ardlie; Esther M. John; Ingrid Oakley-Girvan; Alice S. Whittemore; Kathleen A. Cooney; Sue A. Ingles; David Altshuler; Brian E. Henderson; David Reich
A whole-genome admixture scan in 1,597 African Americans identified a 3.8 Mb interval on chromosome 8q24 as significantly associated with susceptibility to prostate cancer [logarithm of odds (LOD) = 7.1]. The increased risk because of inheriting African ancestry is greater in men diagnosed before 72 years of age (P < 0.00032) and may contribute to the epidemiological observation that the higher risk for prostate cancer in African Americans is greatest in younger men (and attenuates with older age). The same region was recently identified through linkage analysis of prostate cancer, followed by fine-mapping. We strongly replicated this association (P < 4.2 × 10−9) but find that the previously described alleles do not explain more than a fraction of the admixture signal. Thus, admixture mapping indicates a major, still-unidentified risk gene for prostate cancer at 8q24, motivating intense work to find it.
Nature Genetics | 2008
Simon N. Stacey; Andrei Manolescu; Patrick Sulem; Steinunn Thorlacius; Sigurjon A. Gudjonsson; Gudbjorn F. Jonsson; Margret Jakobsdottir; Jon Thor Bergthorsson; Julius Gudmundsson; Katja K. Aben; Luc J Strobbe; Dorine W. Swinkels; K. C.Anton van Engelenburg; Brian E. Henderson; Laurence N. Kolonel; Loic Le Marchand; Esther Millastre; Raquel Andres; Berta Saez; Julio Lambea; Javier Godino; Eduardo Polo; Alejandro Tres; Simone Picelli; Johanna Rantala; Sara Margolin; Thorvaldur Jonsson; Helgi Sigurdsson; Thora Jonsdottir; Jón Hrafnkelsson
We carried out a genome-wide association study of breast cancer predisposition with replication and refinement studies involving 6,145 cases and 33,016 controls and identified two SNPs (rs4415084 and rs10941679) on 5p12 that confer risk, preferentially for estrogen receptor (ER)-positive tumors (OR = 1.27, P = 2.5 × 10−12 for rs10941679). The nearest gene, MRPS30, was previously implicated in apoptosis, ER-positive tumors and favorable prognosis. A recently reported signal in FGFR2 was also found to associate specifically with ER-positive breast cancer.
Human Heredity | 2003
Daniel O. Stram; Christopher A. Haiman; Joel N. Hirschhorn; David Altshuler; Laurence N. Kolonel; Brian E. Henderson; Malcolm C. Pike
We describe an approach for picking haplotype-tagging single nucleotide polymorphisms (htSNPs) that is presently being taken in two large nested case-control studies within a multiethnic cohort (MEC), which are engaged in a search for associations between risk of prostate and breast cancer and common genetic variations in candidate genes. Based on a preliminary sample of 70 control subjects chosen at random from each of the 5 ethnic groups in the MEC we estimate haplotype frequencies using a variant of the Excoffier-Slatkin E-M algorithm after genotyping a high density of SNPs selected every 3–5 kb in and surrounding a candidate gene. In order to evaluate the performance of a candidate set of htSNPS (which will be genotyped in the much larger case-control sample) we treat the haplotype frequencies estimate above as known, and carry out a formal calculation of the uncertainty of the number of copies of common haplotypes carried by an individual, summarizing this calculation as a coefficient of determination, R2h. A candidate set of htSNPS of a given size is chosen so as to maximize the minimum value of R2h over the common haplotypes, h.
Nature Genetics | 2007
Christopher A. Haiman; Loic Le Marchand; Jennifer Yamamato; Daniel O. Stram; Xin Sheng; Laurence N. Kolonel; Anna H. Wu; David Reich; Brian E. Henderson
Variants on chromosome 8q24 contribute risk for prostate cancer; here, we tested whether they also modulate risk for colorectal cancer. We studied 1,807 affected individuals and 5,511 controls and found that one variant, rs6983267, is also significantly associated with colorectal cancer (odds ratio = 1.22; P = 4.4 × 10−6) and that the apportionment of risk among the variants differs significantly between the two cancers. Comprehensive testing in the region uncovered variants capturing significant additional risk. Our results show that variants at 8q24 have different effects on cancer development that depend on the tissue type.
Nature Genetics | 2012
Cathy C. Laurie; Cecelia A. Laurie; Kenneth Rice; Kimberly F. Doheny; Leila R. Zelnick; Caitlin P. McHugh; Hua Ling; Kurt N. Hetrick; Elizabeth W. Pugh; Christopher I. Amos; Qingyi Wei; Li-E Wang; Jeffrey E. Lee; Kathleen C. Barnes; Nadia N. Hansel; Rasika A. Mathias; Denise Daley; Terri H. Beaty; Alan F. Scott; Ingo Ruczinski; Rob Scharpf; Laura J. Bierut; Sarah M. Hartz; Maria Teresa Landi; Neal D. Freedman; Lynn R. Goldin; David Ginsburg; Jun-Jun Li; Karl C. Desch; Sara S. Strom
We detected clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells with the same abnormal karyotype (>5–10%; presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rapidly rises to 2–3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions with genes previously associated with these cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer before DNA sampling, those without a previous diagnosis have an estimated tenfold higher risk of a subsequent hematological cancer (95% confidence interval = 6–18).
Nature Genetics | 2012
Wanqing Wen; Yoon Shin Cho; Wei Zheng; Rajkumar Dorajoo; Norihiro Kato; Lu Qi; Chien-Hsiun Chen; Ryan J. Delahanty; Yukinori Okada; Yasuharu Tabara; Dongfeng Gu; Dingliang Zhu; Christopher A. Haiman; Zengnan Mo; Yu-Tang Gao; Seang-Mei Saw; Min Jin Go; Fumihiko Takeuchi; Li-Ching Chang; Yoshihiro Kokubo; Jun Liang; Mei Hao; Loic Le Marchand; Yi Zhang; Yanling Hu; Tien Yin Wong; Jirong Long; Bok-Ghee Han; Michiaki Kubo; Ken Yamamoto
Multiple genetic loci associated with obesity or body mass index (BMI) have been identified through genome-wide association studies conducted predominantly in populations of European ancestry. We performed a meta-analysis of associations between BMI and approximately 2.4 million SNPs in 27,715 east Asians, which was followed by in silico and de novo replication studies in 37,691 and 17,642 additional east Asians, respectively. We identified ten BMI-associated loci at genome-wide significance (P < 5.0 × 10−8), including seven previously identified loci (FTO, SEC16B, MC4R, GIPR-QPCTL, ADCY3-DNAJC27, BDNF and MAP2K5) and three novel loci in or near the CDKAL1, PCSK1 and GP2 genes. Three additional loci nearly reached the genome-wide significance threshold, including two previously identified loci in the GNPDA2 and TFAP2B genes and a newly identified signal near PAX6, all of which were associated with BMI with P < 5.0 × 10−7. Findings from this study may shed light on new pathways involved in obesity and demonstrate the value of conducting genetic studies in non-European populations.