Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Hunter is active.

Publication


Featured researches published by Christopher A. Hunter.


Nature | 2012

Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells

Tajie H. Harris; Edward J. Banigan; David A. Christian; Christoph Konradt; Elia D. Tait Wojno; Kazumi Norose; Emma H. Wilson; Beena John; Wolfgang Weninger; Andrew D. Luster; Andrea J. Liu; Christopher A. Hunter

Chemokines have a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys, and CXCL10 aids T cells in shortening the average time taken to find rare targets.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii

Jolly Mazumdar; Emma H. Wilson; Kate Masek; Christopher A. Hunter; Boris Striepen

Apicomplexan parasites are the cause of numerous important human diseases including malaria and AIDS-associated opportunistic infections. Drug treatment for these diseases is not satisfactory and is threatened by resistance. The discovery of the apicoplast, a chloroplast-like organelle, presents drug targets unique to these parasites. The apicoplast-localized fatty acid synthesis (FAS II) pathway, a metabolic process fundamentally divergent from the analogous FAS I pathway in humans, represents one such target. However, the specific biological roles of apicoplast FAS II remain elusive. Furthermore, the parasite genome encodes additional and potentially redundant pathways for the synthesis of fatty acids. We have constructed a conditional null mutant of acyl carrier protein, a central component of the FAS II pathway in Toxoplasma gondii. Loss of FAS II severely compromises parasite growth in culture. We show FAS II to be required for the activation of pyruvate dehydrogenase, an important source of the metabolic precursor acetyl-CoA. Interestingly, acyl carrier protein knockout also leads to defects in apicoplast biogenesis and a consequent loss of the organelle. Most importantly, in vivo knockdown of apicoplast FAS II in a mouse model results in cure from a lethal challenge infection. In conclusion, our study demonstrates a direct link between apicoplast FAS II functions and parasite survival and pathogenesis. Our genetic model also offers a platform to dissect the integration of the apicoplast into parasite metabolism, especially its postulated interaction with the mitochondrion.


Chemical Society Reviews | 2007

Chemical double-mutant cycles: dissecting non-covalent interactions

Scott L. Cockroft; Christopher A. Hunter

Thermodynamic double-mutant cycles and triple-mutant boxes are widely employed for the experimental quantification of non-covalent interactions and cooperative effects in proteins. This review describes the application of these powerful methodologies to the study of non-covalent interactions in synthetic systems.


Organic and Biomolecular Chemistry | 2007

Substituent effects on aromatic stacking interactions

Scott L. Cockroft; Julie Perkins; Cristiano Zonta; Harry Adams; Sharon E. Spey; Caroline M. R. Low; Jeremy G. Vinter; Kevin R. Lawson; Christopher J. Urch; Christopher A. Hunter

Synthetic supramolecular zipper complexes have been used to quantify substituent effects on the free energies of aromatic stacking interactions. The conformational properties of the complexes have been characterised using NMR spectroscopy in CDCl(3), and by comparison with the solid state structures of model compounds. The structural similarity of the complexes makes it possible to apply the double mutant cycle method to evaluate the magnitudes of 24 different aromatic stacking interactions. The major trends in the interaction energy can be rationalised using a simple model based on electrostatic interactions between the pi-faces of the two aromatic rings. However, electrostatic interactions between the substituents of one ring and the pi-face of the other make an additional contribution, due to the slight offset in the stacking geometry. This property makes aromatic stacking interactions particularly sensitive to changes in orientation as well as the nature and location of substituents.


Chemical Communications | 2009

Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors

Rafel Cabot; Christopher A. Hunter

Quantitative studies of the 1 : 1 complexes formed between perfluorohexyl iodide and a variety of hydrogen-bond acceptors have been used to probe the relationship between halogen bonding, hydrogen bonding, desolvation and the electrostatics of non-covalent interactions.


Nature Chemistry | 2011

An AAAA–DDDD quadruple hydrogen-bond array

Barry A. Blight; Christopher A. Hunter; David A. Leigh; Hamish McNab; Patrick Thomson

Secondary electrostatic interactions between adjacent hydrogen bonds can have a significant effect on the stability of a supramolecular complex. In theory, the binding strength should be maximized if all the hydrogen-bond donors (D) are on one component and all the hydrogen-bond acceptors (A) are on the other. Here, we describe a readily accessible AAAA–DDDD quadruple hydrogen-bonding array that exhibits exceptionally strong binding for a small-molecule hydrogen-bonded complex in a range of different solvents (K(a) > 3 × 10(12) M(-1) in CH2Cl2, 1.5 × 10(6) M(-1) in CH3CN and 3.4 × 10(5) M(-1) in 10% v/v DMSO/CHCl3). The association constant in CH2Cl2 corresponds to a binding free energy (ΔG) in excess of –71 kJ mol(-1) (more than 20% of the thermodynamic stability of a carbon–carbon covalent bond), which is remarkable for a supramolecular complex held together by just four intercomponent hydrogen bonds.


Journal of Immunology | 2011

Dendritic Cells Distinguish Individual Chemokine Signals through CCR7 and CXCR4

Brendon G. Ricart; Beena John; Dooyoung Lee; Christopher A. Hunter; Daniel A. Hammer

Dendritic cells (DCs) respond to chemotactic signals to migrate from sites of infection to secondary lymphoid organs where they initiate the adaptive immune response. The key chemokines directing their migration are CCL19, CCL21, and CXCL12, but how signals from these chemokines are integrated by migrating cells is poorly understood. Using a microfluidic device, we presented single and competing chemokine gradients to murine bone-marrow derived DCs in a controlled, time-invariant microenvironment. Experiments performed with counter-gradients revealed that CCL19 is 10–100-fold more potent than CCL21 or CXCL12. Interestingly, when the chemoattractive potencies of opposing gradients are matched, cells home to a central region in which the signals from multiple chemokines are balanced; in this region, cells are motile but display no net displacement. Actin and myosin inhibitors affected the speed of crawling but not directed motion, whereas pertussis toxin inhibited directed motion but not speed. These results provide fundamental insight into the processes that DCs use to migrate toward and position themselves within secondary lymphoid organs.


Nature Chemistry | 2010

Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template

Jun Guo; Paul C. Mayers; Gloria Anne Breault; Christopher A. Hunter

The advent of template-directed synthesis has provided access to a range of new interlocked molecular architectures. Although many syntheses of molecular catenanes and rotaxanes have been reported, molecular knots are a class of molecules with topologically non-planar graphs that are rather rare. Here we report a synthetic strategy for the preparation of a molecular trefoil knot from a flexible bipyridine oligomer and a zinc(II) octahedral coordination template. The oligomer folds into a stable open-knot conformation in the presence of the template, and trapping of this arrangement through esterification or ring-closing metathesis produces the closed-knot complex. Subsequent removal of the template from the metathesis product results in a molecular trefoil knot.


Journal of Clinical Investigation | 2016

Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies

Marco Ruella; David M. Barrett; Saad S. Kenderian; Olga Shestova; Ted J. Hofmann; Jessica Perazzelli; Michael Klichinsky; Vania Aikawa; Farzana Nazimuddin; Miroslaw Kozlowski; John Scholler; Simon F. Lacey; J. Joseph Melenhorst; Jennifer J.D. Morrissette; David A. Christian; Christopher A. Hunter; Michael Kalos; David L. Porter; Carl H. June; Stephan A. Grupp; Saar Gill

Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Substituent effects on cation–π interactions: A quantitative study

Christopher A. Hunter; Caroline M. R. Low; Carmen Rotger; Jeremy G. Vinter; Cristiano Zonta

A synthetic supramolecular complex has been adapted to quantify cation–π interactions in chloroform by using chemical double-mutant cycles. The interaction of a pyridinium cation with the π-face of an aromatic ring is found to be very sensitive to the π-electron density. Electron-donating substituents lead to a strong attractive interaction (−8 kJ/mol−1), but electron-withdrawing groups lead to a repulsive interaction (+2 kJ/mol−1).

Collaboration


Dive into the Christopher A. Hunter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Adams

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy G. Vinter

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge