Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Lopez is active.

Publication


Featured researches published by Christopher A. Lopez.


EMBO Reports | 2013

The dynamics of gut-associated microbial communities during inflammation

Sebastian E. Winter; Christopher A. Lopez; Andreas J. Bäumler

Our intestine is host to a large microbial community (microbiota) that educates the immune system and confers niche protection. Profiling of the gut‐associated microbial community reveals a dominance of obligate anaerobic bacteria in healthy individuals. However, intestinal inflammation is associated with a disturbance of the microbiota—known as dysbiosis—that often includes an increased prevalence of facultative anaerobic bacteria. This group contains potentially harmful bacterial species, the bloom of which can further exacerbate inflammation. Here, we review the mechanisms that generate changes in the microbial community structure during inflammation. One emerging concept is that electron acceptors generated as by‐products of the host inflammatory response feed facultative anaerobic bacteria selectively, thereby increasing their prevalence within the community. This new paradigm has broad implications for understanding dysbiosis during gut inflammation and identifies potential targets for intervention strategies.


Mbio | 2012

Phage-Mediated Acquisition of a Type III Secreted Effector Protein Boosts Growth of Salmonella by Nitrate Respiration

Christopher A. Lopez; Sebastian E. Winter; Fabian Rivera-Chávez; Mariana N. Xavier; Victor Poon; Sean Paul Nuccio; Renée M. Tsolis; Andreas J. Bäumler

ABSTRACT Information on how emerging pathogens can invade and persist and spread within host populations remains sparse. In the 1980s, a multidrug-resistant Salmonella enterica serotype Typhimurium clone lysogenized by a bacteriophage carrying the sopE virulence gene caused an epidemic among cattle and humans in Europe. Here we show that phage-mediated horizontal transfer of the sopE gene enhances the production of host-derived nitrate, an energetically highly valuable electron acceptor, in a mouse colitis model. In turn, nitrate fuels a bloom of S. Typhimurium in the gut lumen through anaerobic nitrate respiration while suppressing genes for the utilization of energetically inferior electron acceptors such as tetrathionate. Through this mechanism, horizontal transfer of sopE can enhance the fitness of S. Typhimurium, resulting in its significantly increased abundance in the feces. IMPORTANCE During gastroenteritis, Salmonella enterica serotype Typhimurium can use tetrathionate respiration to edge out competing microbes in the gut lumen. However, the concept that tetrathionate respiration confers a growth benefit in the inflamed gut is not broadly applicable to other host-pathogen combinations because tetrathionate respiration is a signature trait used to differentiate Salmonella serotypes from most other members of the family Enterobacteriaceae. Here we show that by acquiring the phage-carried sopE gene, S. Typhimurium can drive the host to generate an additional respiratory electron acceptor, nitrate. Nitrate suppresses genes for the utilization of energetically inferior electron acceptors such as tetrathionate while enhancing the luminal growth of S. Typhimurium through anaerobic nitrate respiration. Pathways for anaerobic nitrate respiration are widely conserved among members of the family Enterobacteriaceae, thereby making our observations relevant to other enteric pathogens whose relative abundance in the intestinal lumen increases during infection. During gastroenteritis, Salmonella enterica serotype Typhimurium can use tetrathionate respiration to edge out competing microbes in the gut lumen. However, the concept that tetrathionate respiration confers a growth benefit in the inflamed gut is not broadly applicable to other host-pathogen combinations because tetrathionate respiration is a signature trait used to differentiate Salmonella serotypes from most other members of the family Enterobacteriaceae. Here we show that by acquiring the phage-carried sopE gene, S. Typhimurium can drive the host to generate an additional respiratory electron acceptor, nitrate. Nitrate suppresses genes for the utilization of energetically inferior electron acceptors such as tetrathionate while enhancing the luminal growth of S. Typhimurium through anaerobic nitrate respiration. Pathways for anaerobic nitrate respiration are widely conserved among members of the family Enterobacteriaceae, thereby making our observations relevant to other enteric pathogens whose relative abundance in the intestinal lumen increases during infection.


Cell Host & Microbe | 2016

Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella

Fabian Rivera-Chávez; Lillian F. Zhang; Franziska Faber; Christopher A. Lopez; Mariana X. Byndloss; Erin E. Olsan; Gege Xu; Eric M. Velazquez; Carlito B. Lebrilla; Sebastian E. Winter; Andreas J. Bäumler

The mammalian intestine is host to a microbial community that prevents pathogen expansion through unknown mechanisms, while antibiotic treatment can increase susceptibility to enteric pathogens. Here we show that streptomycin treatment depleted commensal, butyrate-producing Clostridia from the mouse intestinal lumen, leading to decreased butyrate levels, increased epithelial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium. Epithelial hypoxia and Salmonella restriction could be restored by tributyrin treatment. Clostridia depletion and aerobic Salmonella expansion were also observed in the absence of streptomycin treatment in genetically resistant mice but proceeded with slower kinetics and required the presence of functional Salmonella type III secretion systems. The Salmonella cytochrome bd-II oxidase synergized with nitrate reductases to drive luminal expansion, and both were required for fecal-oral transmission. We conclude that Salmonella virulence factors and antibiotic treatment promote pathogen expansion through the same mechanism: depletion of butyrate-producing Clostridia to elevate epithelial oxygenation, allowing aerobic Salmonella growth.


PLOS Pathogens | 2013

Salmonella Uses Energy Taxis to Benefit from Intestinal Inflammation

Fabian Rivera-Chávez; Sebastian E. Winter; Christopher A. Lopez; Mariana N. Xavier; Maria G. Winter; Sean Paul Nuccio; Joseph M. Russell; Richard C. Laughlin; Sara D. Lawhon; Torsten Sterzenbach; Charles L. Bevins; Renée M. Tsolis; Rasika M. Harshey; L. Garry Adams; Andreas J. Bäumler

Chemotaxis enhances the fitness of Salmonella enterica serotype Typhimurium (S. Typhimurium) during colitis. However, the chemotaxis receptors conferring this fitness advantage and their cognate signals generated during inflammation remain unknown. Here we identify respiratory electron acceptors that are generated in the intestinal lumen as by-products of the host inflammatory response as in vivo signals for methyl-accepting chemotaxis proteins (MCPs). Three MCPs, including Trg, Tsr and Aer, enhanced the fitness of S. Typhimurium in a mouse colitis model. Aer mediated chemotaxis towards electron acceptors (energy taxis) in vitro and required tetrathionate respiration to confer a fitness advantage in vivo. Tsr mediated energy taxis towards nitrate but not towards tetrathionate in vitro and required nitrate respiration to confer a fitness advantage in vivo. These data suggest that the energy taxis receptors Tsr and Aer respond to distinct in vivo signals to confer a fitness advantage upon S. Typhimurium during inflammation by enabling this facultative anaerobic pathogen to seek out favorable spatial niches containing host-derived electron acceptors that boost its luminal growth.


Mbio | 2013

Streptomycin-Induced Inflammation Enhances Escherichia coli Gut Colonization Through Nitrate Respiration

Alanna M. Spees; Tamding Wangdi; Christopher A. Lopez; Dawn D. Kingsbury; Mariana N. Xavier; Sebastian E. Winter; Renée M. Tsolis; Andreas J. Bäumler

ABSTRACT Treatment with streptomycin enhances the growth of human commensal Escherichia coli isolates in the mouse intestine, suggesting that the resident microbial community (microbiota) can inhibit the growth of invading microbes, a phenomenon known as “colonization resistance.” However, the precise mechanisms by which streptomycin treatment lowers colonization resistance remain obscure. Here we show that streptomycin treatment rendered mice more susceptible to the development of chemically induced colitis, raising the possibility that the antibiotic might lower colonization resistance by changing mucosal immune responses rather than by preventing microbe-microbe interactions. Investigation of the underlying mechanism revealed a mild inflammatory infiltrate in the cecal mucosa of streptomycin-treated mice, which was accompanied by elevated expression of Nos2, the gene that encodes inducible nitric oxide synthase. In turn, this inflammatory response enhanced the luminal growth of E. coli by nitrate respiration in a Nos2-dependent fashion. These data identify low-level intestinal inflammation as one of the factors responsible for the loss of resistance to E. coli colonization after streptomycin treatment. IMPORTANCE Our intestine is host to a complex microbial community that confers benefits by educating the immune system and providing niche protection. Perturbation of intestinal communities by streptomycin treatment lowers “colonization resistance” through unknown mechanisms. Here we show that streptomycin increases the inflammatory tone of the intestinal mucosa, thereby making the bowel more susceptible to dextran sulfate sodium treatment and boosting the Nos2-dependent growth of commensal Escherichia coli by nitrate respiration. These data point to the generation of alternative electron acceptors as a by-product of the inflammatory host response as an important factor responsible for lowering resistance to colonization by facultative anaerobic bacteria such as E. coli. Our intestine is host to a complex microbial community that confers benefits by educating the immune system and providing niche protection. Perturbation of intestinal communities by streptomycin treatment lowers “colonization resistance” through unknown mechanisms. Here we show that streptomycin increases the inflammatory tone of the intestinal mucosa, thereby making the bowel more susceptible to dextran sulfate sodium treatment and boosting the Nos2-dependent growth of commensal Escherichia coli by nitrate respiration. These data point to the generation of alternative electron acceptors as a by-product of the inflammatory host response as an important factor responsible for lowering resistance to colonization by facultative anaerobic bacteria such as E. coli.


Science | 2017

Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion

Mariana X. Byndloss; Erin E. Olsan; Fabian Rivera-Chávez; Connor R. Tiffany; Stephanie A. Cevallos; Kristen L. Lokken; Teresa P. Torres; Austin J. Byndloss; Franziska Faber; Yandong Gao; Yael Litvak; Christopher A. Lopez; Gege Xu; Eleonora Napoli; Cecilia Giulivi; Renée M. Tsolis; Alexander Revzin; Carlito B. Lebrilla; Andreas J. Bäumler

Healthy guts exclude oxygen Normally, the lumen of the colon lacks oxygen. Fastidiously anaerobic butyrate-producing bacteria thrive in the colon; by ablating these organisms, antibiotic treatment removes butyrate. Byndloss et al. discovered that loss of butyrate deranges metabolic signaling in gut cells (see the Perspective by Cani). This induces nitric oxidase to generate nitrate in the lumen and disables β-oxidation in epithelial cells that would otherwise mop up stray oxygen before it enters the colon. Simultaneously, regulatory T cells retreat, and inflammation is unchecked, which contributes yet more oxygen species to the colon. Then, facultative aerobic pathogens, such as Escherichia coli and Salmonella enterica, can take advantage of the altered environment and outgrow any antibiotic-crippled and benign anaerobes. Science, this issue p. 570; see also p. 548 Butyrate-producing microbes contribute to synergism between epithelial cell metabolism and immune response regulation to maintain gut heath. Perturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator–activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of Nos2, the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling. Microbiota-induced PPAR-γ signaling also limits the luminal bioavailability of oxygen by driving the energy metabolism of colonic epithelial cells (colonocytes) toward β-oxidation. Therefore, microbiota-activated PPAR-γ signaling is a homeostatic pathway that prevents a dysbiotic expansion of potentially pathogenic Escherichia and Salmonella by reducing the bioavailability of respiratory electron acceptors to Enterobacteriaceae in the lumen of the colon.


Nature | 2016

Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion

Franziska Faber; Lisa Tran; Mariana X. Byndloss; Christopher A. Lopez; Eric M. Velazquez; Tobias Kerrinnes; Sean Paul Nuccio; Tamding Wangdi; Oliver Fiehn; Renée M. Tsolis; Andreas J. Bäumler

Changes in the gut microbiota may underpin many human diseases, but the mechanisms that are responsible for altering microbial communities remain poorly understood. Antibiotic usage elevates the risk of contracting gastroenteritis caused by Salmonella enterica serovars, increases the duration for which patients shed the pathogen in their faeces, and may on occasion produce a bacteriologic and symptomatic relapse. These antibiotic-induced changes in the gut microbiota can be studied in mice, in which the disruption of a balanced microbial community by treatment with the antibiotic streptomycin leads to an expansion of S. enterica serovars in the large bowel. However, the mechanisms by which streptomycin treatment drives an expansion of S. enterica serovars are not fully resolved. Here we show that host-mediated oxidation of galactose and glucose promotes post-antibiotic expansion of S. enterica serovar Typhimurium (S. Typhimurium). By elevating expression of the gene encoding inducible nitric oxide synthase (iNOS) in the caecal mucosa, streptomycin treatment increased post-antibiotic availability of the oxidation products galactarate and glucarate in the murine caecum. S. Typhimurium used galactarate and glucarate within the gut lumen of streptomycin pre-treated mice, and genetic ablation of the respective catabolic pathways reduced S. Typhimurium competitiveness. Our results identify host-mediated oxidation of carbohydrates in the gut as a mechanism for post-antibiotic pathogen expansion.


PLOS Pathogens | 2013

Colonization resistance: battle of the bugs or Menage a Trois with the host?

Alanna M. Spees; Christopher A. Lopez; Dawn D. Kingsbury; Sebastian E. Winter; Andreas J. Bäumler

The lower gastrointestinal tract is host to a dense microbial community, known as the gut microbiota, which is dominated by obligate anaerobic bacteria belonging to the phyla Bacteroidetes (class Bacteroidia) and Firmicutes (class Clostridia). This microbial community offers benefit by conferring niche protection against invading microbes, a property known as “colonization resistance” (reviewed in [1]). The concept of colonization resistance was initially derived from studies showing that an antibiotic-mediated disruption of gut-associated microbial communities greatly enhances the ability of facultative anaerobic Enterobacteriaceae, such as Escherichia coli or Salmonella enterica, to colonize the large bowel [2]–[4]. Conventional wisdom holds that resident Bacteroidia and Clostridia confer colonization resistance by “competitive exclusion” of Enterobacteriaceae (phylum Proteobacteria) through microbe-microbe interactions. However, recent studies draw a tantalizing new picture, which suggests that host interactions might play a central role in shaping the microbial community structure. Here we review these new hypotheses and their implications for human health.


Science | 2016

Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration

Christopher A. Lopez; Brittany M. Miller; Fabian Rivera-Chávez; Eric M. Velazquez; Mariana X. Byndloss; Alfredo Chávez-Arroyo; Kristen L. Lokken; Renée M. Tsolis; Sebastian E. Winter; Andreas J. Bäumler

Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.


Infection and Immunity | 2015

The Periplasmic Nitrate Reductase NapABC Supports Luminal Growth of Salmonella enterica Serovar Typhimurium during Colitis

Christopher A. Lopez; Fabian Rivera-Chávez; Mariana X. Byndloss; Andreas J. Bäumler

ABSTRACT The food-borne pathogen Salmonella enterica serovar Typhimurium benefits from acute inflammation in part by using host-derived nitrate to respire anaerobically and compete successfully with the commensal microbes during growth in the intestinal lumen. The S. Typhimurium genome contains three nitrate reductases, encoded by the narGHI, narZYV, and napABC genes. Work on homologous genes present in Escherichia coli suggests that nitrate reductase A, encoded by the narGHI genes, is the main enzyme promoting growth on nitrate as an electron acceptor in anaerobic environments. Using a mouse colitis model, we found, surprisingly, that S. Typhimurium strains with defects in either nitrate reductase A (narG mutant) or the regulator inducing its transcription in the presence of high concentrations of nitrate (narL mutant) exhibited growth comparable to that of wild-type S. Typhimurium. In contrast, a strain lacking a functional periplasmic nitrate reductase (napA mutant) exhibited a marked growth defect in the lumen of the colon. In E. coli, the napABC genes are transcribed maximally under anaerobic growth conditions in the presence of low nitrate concentrations. Inactivation of narP, encoding a response regulator that activates napABC transcription in response to low nitrate concentrations, significantly reduced the growth of S. Typhimurium in the gut lumen. Cecal nitrate measurements suggested that the murine cecum is a nitrate-limited environment. Collectively, our results suggest that S. Typhimurium uses the periplasmic nitrate reductase to support its growth on the low nitrate concentrations encountered in the gut, a strategy that may be shared with other enteric pathogens.

Collaboration


Dive into the Christopher A. Lopez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian E. Winter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge