Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sean Paul Nuccio is active.

Publication


Featured researches published by Sean Paul Nuccio.


Cell Host & Microbe | 2009

Lipocalin-2 Resistance Confers an Advantage to Salmonella enterica Serotype Typhimurium for Growth and Survival in the Inflamed Intestine

Manuela Raffatellu; Michael D. George; Yuko Akiyama; Michael Hornsby; Sean Paul Nuccio; Tatiane A. Paixão; Brian P. Butler; Hiutung Chu; Renato L. Santos; Thorsten Berger; Tak W. Mak; Renée M. Tsolis; Charles L. Bevins; Jay V. Solnick; Satya Dandekar; Andreas J. Bäumler

In response to enteric pathogens, the inflamed intestine produces antimicrobial proteins, a process mediated by the cytokines IL-17 and IL-22. Salmonella enterica serotype Typhimurium thrives in the inflamed intestinal environment, suggesting that the pathogen is resistant to antimicrobials it encounters in the intestinal lumen. However, the identity of these antimicrobials and corresponding bacterial resistance mechanisms remain unknown. Here, we report that enteric infection of rhesus macaques and mice with S. Typhimurium resulted in marked Il-17- and IL-22-dependent intestinal epithelial induction and luminal accumulation of lipocalin-2, an antimicrobial protein that prevents bacterial iron acquisition. Resistance to lipocalin-2, mediated by the iroBCDE iroN locus, conferred a competitive advantage to the bacterium in colonizing the inflamed intestine of wild-type but not of lipocalin-2-deficient mice. Thus, resistance to lipocalin-2 defines a specific adaptation of S. Typhimurium for growth in the inflamed intestine.


Microbiology and Molecular Biology Reviews | 2007

Evolution of the Chaperone/Usher Assembly Pathway: Fimbrial Classification Goes Greek

Sean Paul Nuccio; Andreas J. Bäumler

SUMMARY Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed α-, β-, γ-, κ-, π-, and σ-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.


Science | 2012

Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets

Hiutung Chu; Marzena Pazgier; Grace Jung; Sean Paul Nuccio; Patricia A. Castillo; Maarten F. de Jong; Maria G. Winter; Sebastian E. Winter; Jan Wehkamp; Bo Shen; Nita H. Salzman; Mark A. Underwood; Renée M. Tsolis; Glenn M. Young; Wuyuan Lu; Robert I. Lehrer; Andreas J. Bäumler; Charles L. Bevins

Netting the Bad Guys Antimicrobial peptides are an evolutionarily conserved component of innate immunity in the intestine. One family, α-defensins, typically exert their antimicrobial effects through microbicidal activity against bacteria. Humans express only two α-defensins, human defensin 5 (HD5) and HD6. HD5 exhibits bactericidal activity and plays a role in shaping the bacterial composition of the gut. HD6, on the other hand, does not show bactericidal activity and its function in the gut is unclear. Now, Chu et al. (p. 477, published online 21 June; see the Perspective by Ouellette and Selsted) show that HD6 protects against bacterial pathogens. Rather than killing them directly, HD6 binds to bacteria surface proteins and, through a process of self-assembly, forms fibrils and nanonets that ensnare invading bacterial pathogens. Rather than killing bacteria directly, a gut antimicrobial peptide forms netlike structures that ensnare invading bacteria. Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.


Mbio | 2012

Phage-Mediated Acquisition of a Type III Secreted Effector Protein Boosts Growth of Salmonella by Nitrate Respiration

Christopher A. Lopez; Sebastian E. Winter; Fabian Rivera-Chávez; Mariana N. Xavier; Victor Poon; Sean Paul Nuccio; Renée M. Tsolis; Andreas J. Bäumler

ABSTRACT Information on how emerging pathogens can invade and persist and spread within host populations remains sparse. In the 1980s, a multidrug-resistant Salmonella enterica serotype Typhimurium clone lysogenized by a bacteriophage carrying the sopE virulence gene caused an epidemic among cattle and humans in Europe. Here we show that phage-mediated horizontal transfer of the sopE gene enhances the production of host-derived nitrate, an energetically highly valuable electron acceptor, in a mouse colitis model. In turn, nitrate fuels a bloom of S. Typhimurium in the gut lumen through anaerobic nitrate respiration while suppressing genes for the utilization of energetically inferior electron acceptors such as tetrathionate. Through this mechanism, horizontal transfer of sopE can enhance the fitness of S. Typhimurium, resulting in its significantly increased abundance in the feces. IMPORTANCE During gastroenteritis, Salmonella enterica serotype Typhimurium can use tetrathionate respiration to edge out competing microbes in the gut lumen. However, the concept that tetrathionate respiration confers a growth benefit in the inflamed gut is not broadly applicable to other host-pathogen combinations because tetrathionate respiration is a signature trait used to differentiate Salmonella serotypes from most other members of the family Enterobacteriaceae. Here we show that by acquiring the phage-carried sopE gene, S. Typhimurium can drive the host to generate an additional respiratory electron acceptor, nitrate. Nitrate suppresses genes for the utilization of energetically inferior electron acceptors such as tetrathionate while enhancing the luminal growth of S. Typhimurium through anaerobic nitrate respiration. Pathways for anaerobic nitrate respiration are widely conserved among members of the family Enterobacteriaceae, thereby making our observations relevant to other enteric pathogens whose relative abundance in the intestinal lumen increases during infection. During gastroenteritis, Salmonella enterica serotype Typhimurium can use tetrathionate respiration to edge out competing microbes in the gut lumen. However, the concept that tetrathionate respiration confers a growth benefit in the inflamed gut is not broadly applicable to other host-pathogen combinations because tetrathionate respiration is a signature trait used to differentiate Salmonella serotypes from most other members of the family Enterobacteriaceae. Here we show that by acquiring the phage-carried sopE gene, S. Typhimurium can drive the host to generate an additional respiratory electron acceptor, nitrate. Nitrate suppresses genes for the utilization of energetically inferior electron acceptors such as tetrathionate while enhancing the luminal growth of S. Typhimurium through anaerobic nitrate respiration. Pathways for anaerobic nitrate respiration are widely conserved among members of the family Enterobacteriaceae, thereby making our observations relevant to other enteric pathogens whose relative abundance in the intestinal lumen increases during infection.


PLOS Pathogens | 2011

Salmonella bongori Provides Insights into the Evolution of the Salmonellae

Maria Fookes; Gunnar N. Schroeder; Gemma C. Langridge; Carlos J. Blondel; Caterina Mammina; Thomas Richard Connor; Helena M. B. Seth-Smith; Georgios S. Vernikos; Keith S. Robinson; Mandy Sanders; Nicola K. Petty; Robert A. Kingsley; Andreas J. Bäumler; Sean Paul Nuccio; Inés Contreras; Carlos A. Santiviago; Duncan J. Maskell; Paul A. Barrow; Tom J. Humphrey; Antonino Nastasi; Mark Roberts; Gad Frankel; Julian Parkhill; Gordon Dougan; Nicholas R. Thomson

The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.


PLOS Pathogens | 2013

Salmonella Uses Energy Taxis to Benefit from Intestinal Inflammation

Fabian Rivera-Chávez; Sebastian E. Winter; Christopher A. Lopez; Mariana N. Xavier; Maria G. Winter; Sean Paul Nuccio; Joseph M. Russell; Richard C. Laughlin; Sara D. Lawhon; Torsten Sterzenbach; Charles L. Bevins; Renée M. Tsolis; Rasika M. Harshey; L. Garry Adams; Andreas J. Bäumler

Chemotaxis enhances the fitness of Salmonella enterica serotype Typhimurium (S. Typhimurium) during colitis. However, the chemotaxis receptors conferring this fitness advantage and their cognate signals generated during inflammation remain unknown. Here we identify respiratory electron acceptors that are generated in the intestinal lumen as by-products of the host inflammatory response as in vivo signals for methyl-accepting chemotaxis proteins (MCPs). Three MCPs, including Trg, Tsr and Aer, enhanced the fitness of S. Typhimurium in a mouse colitis model. Aer mediated chemotaxis towards electron acceptors (energy taxis) in vitro and required tetrathionate respiration to confer a fitness advantage in vivo. Tsr mediated energy taxis towards nitrate but not towards tetrathionate in vitro and required nitrate respiration to confer a fitness advantage in vivo. These data suggest that the energy taxis receptors Tsr and Aer respond to distinct in vivo signals to confer a fitness advantage upon S. Typhimurium during inflammation by enabling this facultative anaerobic pathogen to seek out favorable spatial niches containing host-derived electron acceptors that boost its luminal growth.


Mbio | 2014

Comparative Analysis of Salmonella Genomes Identifies a Metabolic Network for Escalating Growth in the Inflamed Gut

Sean Paul Nuccio; Andreas J. Bäumler

ABSTRACT The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a “business plan” for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes. While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a “business plan” for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.


Infection and Immunity | 2009

Contribution of Flagellin Pattern Recognition to Intestinal Inflammation during Salmonella enterica Serotype Typhimurium Infection

Sebastian E. Winter; Parameth Thiennimitr; Sean Paul Nuccio; Takeshi Haneda; Maria G. Winter; R. Paul Wilson; Joseph M. Russell; Thomas Henry; Quynh T. Tran; Sara D. Lawhon; Gabriel Gomez; Charles L. Bevins; Holger Rüssmann; Denise M. Monack; L. Garry Adams; Andreas J. Bäumler

ABSTRACT Salmonella enterica serotype Typhimurium causes acute inflammatory diarrhea in humans. Flagella contribute to intestinal inflammation, but the mechanism remains unclear since most mutations abrogating pattern recognition of flagellin also prevent motility and reduce bacterial invasion. To determine the contribution of flagellin pattern recognition to the generation of innate immune responses, we compared in two animal models a nonmotile, but flagellin-expressing and -secreting serotype Typhimurium strain (flgK mutant) to a nonmotile, non-flagellin-expressing strain (flgK fliC fljB mutant). In vitro, caspase-1 can be activated by cytosolic delivery of flagellin, resulting in release of the interferon gamma inducing factor interleukin-18 (IL-18). Experiments with streptomycin-pretreated caspase-1-deficient mice suggested that induction of gamma interferon expression in the murine cecum early (12 h) after serotype Typhimurium infection was caspase-1 dependent but independent of flagellin pattern recognition. In addition, mRNA levels of the CXC chemokines macrophage inflammatory protein 2 and keratinocyte-derived chemokine were markedly increased early after serotype Typhimurium infection of streptomycin-pretreated wild-type mice regardless of flagellin expression. In contrast, in bovine ligated ileal loops, flagellin pattern recognition contributed to increased mRNA levels of macrophage inflammatory protein 3α and more fluid accumulation at 2 h after infection. Collectively, our data suggest that pattern recognition of flagellin contributes to early innate host responses in the bovine ileal mucosa but not in the murine cecal mucosa.


Nature | 2016

Microcins mediate competition among Enterobacteriaceae in the inflamed gut

Martina Sassone-Corsi; Sean Paul Nuccio; Henry Liu; Dulcemaria Hernandez; Christine T. Vu; Amy A. Takahashi; Robert A. Edwards; Manuela Raffatellu

The Enterobacteriaceae are a family of Gram-negative bacteria that include commensal organisms as well as primary and opportunistic pathogens that are among the leading causes of morbidity and mortality worldwide. Although Enterobacteriaceae often comprise less than 1% of a healthy intestine’s microbiota, some of these organisms can bloom in the inflamed gut; expansion of enterobacteria is a hallmark of microbial imbalance known as dysbiosis. Microcins are small secreted proteins that possess antimicrobial activity in vitro, but whose role in vivo has been unclear. Here we demonstrate that microcins enable the probiotic bacterium Escherichia coli Nissle 1917 (EcN) to limit the expansion of competing Enterobacteriaceae (including pathogens and pathobionts) during intestinal inflammation. Microcin-producing EcN limits the growth of competitors in the inflamed intestine, including commensal E. coli, adherent–invasive E. coli and the related pathogen Salmonella enterica. Moreover, only therapeutic administration of the wild-type, microcin-producing EcN to mice previously infected with S. enterica substantially reduced intestinal colonization by the pathogen. Our work provides the first evidence that microcins mediate inter- and intraspecies competition among the Enterobacteriaceae in the inflamed gut. Moreover, we show that microcins can act as narrow-spectrum therapeutics to inhibit enteric pathogens and reduce enterobacterial blooms.


Molecular Microbiology | 2009

The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity

Sebastian E. Winter; Maria G. Winter; Parameth Thiennimitr; Valerie A. Gerriets; Sean Paul Nuccio; Holger Rüssmann; Andreas J. Bäumler

In response to osmolarity, Salmonella enterica serotype Typhi (S. Typhi) regulates genes required for Vi capsular antigen expression oppositely to those required for motility and invasion. Previous studies suggest that osmoregulation of motility, invasion and capsule expression is mediated through the RcsC/RcsD/RcsB phosphorelay system. Here we performed gene expression profiling and functional studies to determine the role of TviA, an auxiliary protein of the RcsB response regulator, in controlling virulence gene expression in S. Typhi. TviA repressed expression of genes encoding flagella and the invasion‐associated type III secretion system (T3SS‐1) through repression of the flagellar regulators flhDC and fliZ, resulting in reduced invasion, reduced motility and reduced expression of FliC. Both RcsB and TviA repressed expression of flhDC, but only TviA altered flhDC expression in response to osmolarity. Introduction of tviA into S. enterica serotype Typhimurium rendered flhDC transcription sensitive to changes in osmolarity. These data suggest that the auxiliary TviA protein integrates a new regulatory input into the RcsB regulon of S. Typhi, thereby altering expression of genes encoding flagella, the Vi antigen and T3SS‐1 in response to osmolarity.

Collaboration


Dive into the Sean Paul Nuccio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian E. Winter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judith Behnsen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung Joo Lee

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge