Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Maloney is active.

Publication


Featured researches published by Christopher A. Maloney.


Proceedings of the National Academy of Sciences of the United States of America | 2007

DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status

Kevin D. Sinclair; Cinzia Allegrucci; Ravinder Singh; David S. Gardner; Sonia Sebastian; Jayson Bispham; Alexandra Thurston; John F. Huntley; William D. Rees; Christopher A. Maloney; Richard G. Lea; Jim Craigon; T.G. McEvoy; Lorraine E. Young

A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B12 and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure–effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.


PLOS ONE | 2015

Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

Virginie Lecomte; Nadeem O. Kaakoush; Christopher A. Maloney; Mukesh Raipuria; Karina Huinao; Hazel M. Mitchell; Margaret J. Morris

The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.


Molecular and Cellular Biology | 2007

Erythroid Krüppel-Like Factor Directly Activates the Basic Krüppel-Like Factor Gene in Erythroid Cells

Alister P. W. Funnell; Christopher A. Maloney; Lucinda J. Thompson; Janelle R. Keys; Michael R. Tallack; Andrew C. Perkins; Merlin Crossley

ABSTRACT The Sp/Krüppel-like factor (Sp/Klf) family is comprised of around 25 zinc finger transcription factors that recognize CACCC boxes and GC-rich elements. We have investigated basic Krüppel-like factor (Bklf/Klf3) and show that in erythroid tissues its expression is highly dependent on another family member, erythroid Krüppel-like factor (Eklf/Klf1). We observe that Bklf mRNA is significantly reduced in erythroid tissues from Eklf-null murine embryos. We find that Bklf is driven primarily by two promoters, a ubiquitously active GC-rich upstream promoter, 1a, and an erythroid downstream promoter, 1b. Transcripts from the two promoters encode identical proteins. Interestingly, both the ubiquitous and the erythroid promoter are dependent on Eklf in erythroid cells. Eklf also activates both promoters in transient assays. Experiments utilizing an inducible form of Eklf demonstrate activation of the endogenous Bklf gene in the presence of an inhibitor of protein synthesis. The kinetics of activation are also consistent with Bklf being a direct Eklf target. Chromatin immunoprecipitation assays confirm that Eklf associates with both Bklf promoters. Eklf is typically an activator of transcription, whereas Bklf is noted as a repressor. Our results support the hypothesis that feedback cross-regulation occurs within the Sp/Klf family in vivo.


The FASEB Journal | 2014

Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring

Sheau-Fang Ng; Ruby C.Y. Lin; Christopher A. Maloney; Neil A. Youngson; Julie A. Owens; Margaret J. Morris

We previously showed that paternal high‐fat diet (HFD) consumption programs β‐cell dysfunction in female rat offspring, together with transcriptome alterations in islets. Here we investigated the retroperitoneal white adipose tissue (RpWAT) transcriptome using gene and pathway enrichment and pathway analysis to determine whether commonly affected network topologies exist between these two metabolically related tissues. In RpWAT, 5108 genes were differentially expressed due to a paternal HFD; the top 5 significantly enriched networks identified by pathway analysis in offspring of HFD fathers compared with those of fathers fed control diet were: mitochondrial and cellular response to stress, telomerase signaling, cell death and survival, cell cycle, cellular growth and proliferation, and cancer. A total of 187 adipose olfactory receptor genes were down‐regulated. Interrogation against the islet transcriptome identified specific gene networks and pathways, including olfactory receptor genes that were similarly affected in both tissues (411 common genes, P<0.05). In particular, we highlight a common molecular network, cell cycle and cancer, with the same hub gene, Myc, suggesting early onset developmental changes that persist, shared responses to programmed systemic factors, or crosstalk between tissues. Thus, paternal HFD consumption triggers unique gene signatures, consistent with premature aging and chronic degenerative disorders, in both RpWAT and pancreatic islets of daughters.—Ng, S.‐F., Lin, R. C. Y., Maloney, C. A., Youngson, N. A., Owens, J. A., Morris, M. J. Paternal high‐fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J. 28, 1830–1841 (2014). www.fasebj.org


Ppar Research | 2008

The Roles of PPARs in the Fetal Origins of Metabolic Health and Disease

William D. Rees; Christopher J. McNeil; Christopher A. Maloney

Beyond the short-term effects on fertility, there is increasing evidence that obesity or the consumption of an inappropriate diet by the mother during pregnancy adversely affects the long-term health of her offspring. PPAR and RXR isotypes are widely expressed in reproductive tissues and in the developing fetus. Through their interactions with fatty acids, they may mediate adaptive responses to the changes in the maternal diet. In the maturing follicle, PPAR-γ has an important role in the granulosa cells that surround the maturing oocyte. After fertilisation, PPAR-γ and PPAR-β/δ are essential regulators of placentation and the subsequent development of key metabolic tissues such as skeletal muscle and adipose cells. Activation of PPAR-γ and PPAR-β/δ during fetal development has the potential to modify the growth and development of these tissues. PPAR-α is expressed at low levels in the fetal liver, however, this expression may be important, as changes in the methylation of DNA in its promoter region are reported to take place during this period of development. This epigenetic modification then programmes subsequent expression. These findings suggest that two separate PPAR-dependent mechanisms may be involved in the fetal adaptations to the maternal diet, one, mediated by PPAR-γ and PPAR-β/δ, regulating cell growth and differentiation; and another adapting long-term lipid metabolism via epigenetic changes in PPAR-α to optimise postnatal survival.


Epigenetics | 2013

Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice.

Cheryl C.Y. Li; Paul E. Young; Christopher A. Maloney; Sally A. Eaton; Mark J. Cowley; Michael E. Buckland; Thomas Preiss; Darren C. Henstridge; Gregory J. Cooney; Mark A. Febbraio; David I. K. Martin; Jennifer E. Cropley; Catherine M. Suter

Intrauterine nutrition can program metabolism, creating stable changes in physiology that may have significant health consequences. The mechanism underlying these changes is widely assumed to involve epigenetic changes to the expression of metabolic genes, but evidence supporting this idea is limited. Here we have performed the first study of the epigenomic consequences of exposure to maternal obesity and diabetes. We used a mouse model of natural-onset obesity that allows comparison of genetically identical mice whose mothers were either obese and diabetic or lean with a normal metabolism. We find that the offspring of obese mothers have a latent metabolic phenotype that is unmasked by exposure to a Western-style diet, resulting in glucose intolerance, insulin resistance and hepatic steatosis. The offspring show changes in hepatic gene expression and widespread but subtle alterations in cytosine methylation. Contrary to expectation, these molecular changes do not point to metabolic pathways but instead reside in broadly developmental ontologies. We propose that, rather than being adaptive, these changes may simply produce an inappropriate response to suboptimal environments; maladaptive phenotypes may be avoidable if postnatal nutrition is carefully controlled.


British Journal of Nutrition | 2007

Folate deficiency during pregnancy impacts on methyl metabolism without affecting global DNA methylation in the rat fetus.

Christopher A. Maloney; Susan M. Hay; William D. Rees

The methionine cycle and methyl group metabolism are implicated in the long-term programming of metabolism. Diets deficient in folic acid, methionine and choline have been fed to pregnant rats to examine the effects on amino acid metabolism, choline reserves and DNA methylation in dam and fetuses. Animals were fed folate-deficient, folate-deficient with low methionine, folate-deficient with low choline and folate-deficient, low-methionine, low-choline diets starting 2 weeks before mating. The dams and their fetuses were subsequently killed on day 21 of gestation for analysis. Diets low in methionine reduced fetal and maternal weight. Folate deficiency increased the concentrations of homocysteine, glycine, serine and threonine in the maternal plasma, and this was exacerbated by the low-methionine diets. The changes in the amino acid profile in the fetal serum were similar but less pronounced. This result suggests that fetal metabolism was less perturbed. Folate deficiency increased free choline in the maternal liver at the expense of phosphocholine stores. It has been suggested that a deficiency in methyl donors in the diet during pregnancy may impact on key methylation reactions, including the methylation of DNA. Despite widespread changes in the metabolism of choline and amino acids, there was no change in the global methylation of cytosine in DNA from either maternal or fetal livers. This suggests a more indirect mechanism in which gene-nutrient interactions modify the process of differential methylation during development.


Journal of Nutrition | 2011

A Methyl-Deficient Diet Fed to Rat Dams during the Peri-Conception Period Programs Glucose Homeostasis in Adult Male but Not Female Offspring

Christopher A. Maloney; Susan M. Hay; Loraine E. Young; Kevin D. Sinclair; William D. Rees

Methyl deficiencies have been implicated in metabolic programming during the periods of oocyte and embryo development. Semisynthetic methyl-deficient diets (MD) with no folic acid, 0.05% choline, and approximately one-half the recommended content of methionine were fed to female rats for 3 wk prior to mating and for the first 5 d of gestation. During the period of MD feeding, plasma homocysteine concentrations were approximately twice those of rats fed the complete (CON) diet. From d 5, both groups received a complete semipurified AIN diet until birth. On d 8, plasma homocysteine concentrations did not differ between the 2 groups. Thereafter, dams and offspring were fed a nonpurified diet for the remainder of the experiment. At 6 mo of age, the homeostatic model assessment (HOMA) index of the male MD offspring tended to be 32% higher (P = 0.053) and peak insulin during an oral glucose tolerance test (oGTT) was 39% higher (P < 0.05) compared with the male CON offspring. There was no difference in the response to an oGTT in the female offspring at 6 mo of age. The increased HOMA index of male MD offspring persisted to 12 mo of age. The peak glucose concentration during oGTT was 23% higher (P < 0.05) in MD compared with the CON males despite 39% greater (P < 0.05) peak insulin concentrations. This study shows that in rats, a physiologically relevant methyl-deficient diet fed during the period of oocyte maturation and preimplantation development programs gender-specific changes in glucose handling by the offspring.


Journal of Nutrition | 2006

Sulfur Amino Acid Metabolism in Pregnancy: The Impact of Methionine in the Maternal Diet

William D. Rees; Fiona A. Wilson; Christopher A. Maloney

Animal studies show that the balance of methionine relative to other amino acids in the maternal diet is critical, as fetal growth is not only retarded by diets that are deficient but also by those containing excess. Diets with an inappropriate balance of methionine can adversely affect both short-term reproductive function and the long-term physiology of the offspring. The catabolism of unused methionine increases the demand for glycine and may cause a deficiency. High levels of methionine may also perturb intracellular S-adenosyl methionine pools and have an effect on the methylation of DNA and proteins. Excess methionine in the diet may also indirectly influence fetal development through the production of homocysteine or by the perturbation of endocrine functions. The metabolic interactions among dietary methionine, folic acid, and choline mean that other diet components can also change the methionine requirement.


Human Molecular Genetics | 2011

Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases

Kynan T. Lawlor; Louise V. O'Keefe; Saumya E. Samaraweera; Clare L. van Eyk; Catherine J. McLeod; Christopher A. Maloney; Thurston H. Y. Dang; Catherine M. Suter; Robert I. Richards

The pathogenic agent responsible for the expanded repeat diseases, a group of neurodegenerative diseases that includes Huntingtons disease is not yet fully understood. Expanded polyglutamine (polyQ) is thought to be the toxic agent in certain cases, however, not all expanded repeat disease genes can encode a polyQ sequence. Since a repeat-containing RNA intermediary is common to all of these diseases, hairpin-forming single-stranded RNA has been investigated as a potential common pathogenic agent. More recently, it has become apparent that most of the expanded repeat disease loci have transcription occurring from both strands, raising the possibility that the complementary repeat RNAs could form a double-stranded structure. In our investigation using Drosophila models of these diseases, we identified a fortuitous integration event that models bidirectional repeat RNA transcription with the resultant flies exhibiting inducible pathology. We therefore established further lines of Drosophila expressing independent complementary repeat RNAs and found that these are toxic. The Dicer pathway is essential for this toxicity and in neuronal cells accounts for metabolism of the high copy number (CAG.CUG)(100) double-stranded RNAs down to (CAG)(7) single-stranded small RNAs. We also observe significant changes to the microRNA profile in neurons. These data identify a novel pathway through which double-stranded repeat RNA is toxic and capable of eliciting symptoms common to neurodegenerative human diseases resulting from dominantly inherited expanded repeats.

Collaboration


Dive into the Christopher A. Maloney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret J. Morris

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Susan M. Hay

Rowett Research Institute

View shared research outputs
Top Co-Authors

Avatar

Virginie Lecomte

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil A. Youngson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Catherine M. Suter

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge