Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher A. Schmitt is active.

Publication


Featured researches published by Christopher A. Schmitt.


Behaviour | 2009

Dispersal patterns in sympatric woolly and spider monkeys: integrating molecular and observational data

Anthony Di Fiore; Andres Link; Christopher A. Schmitt; Stephanie N. Spehar

Dispersal is a behavioral process that shuffles genes across the physical and social landscapes. Analysis of how genetic variation is structured hierarchically and among males versus females can provide insights into underlying dispersal processes, even when direct observations of dispersal events are lacking, but application of these techniques in primate studies has been limited. We investigated dispersal patterns in two South American primates — woolly and spider monkeys — using a combination of multilocus genotype data from > 150 animals sampled at two sites in Amazonian Ecuador and opportunistic field observations that shed light on likely dispersal events. Molecular analyses revealed considerable gene flow by females, but substantial male-mediated gene flow was also detected, particularly for woolly monkeys. In both taxa, the extent of population differentiation between the two study sites was greater for males than for females, indicating that gene flow by males has been more restricted historically. Additionally, in one group of spider monkeys, the average relatedness among adult males was significantly greater than that among females, consistent with strong male philopatry, and assignment tests for that group likewise suggest female-biased dispersal. However, for another group of spider monkeys — and for all groups of woolly monkey surveyed — these patterns were not observed. Our molecular results are concordant with field observations of immigrations by female spider monkeys, disappearances (likely emigrations) involving females of both species, and multiple sightings of solitary males and small bachelor groups in woolly monkeys, as well as with the specific dispersal histories of a few woolly monkey individuals discernable through longitudinal molecular sampling. Overall, the results demonstrate the utility of molecular approaches to studying dispersal in primates as a complement to observational studies, but also suggest that further evaluation of dispersal patterns among these primates is needed.


PLOS Pathogens | 2013

SIVagm Infection in Wild African Green Monkeys from South Africa: Epidemiology, Natural History, and Evolutionary Considerations

Dongzhu Ma; Anna J. Jasinska; Jan Kristoff; J. Paul Grobler; Trudy R. Turner; Yoon Jung; Christopher A. Schmitt; Kevin Raehtz; Felix Feyertag; Natalie Martinez Sosa; Viskam Wijewardana; Donald S. Burke; David Robertson; Russell P. Tracy; Ivona Pandrea; Nelson B. Freimer; Cristian Apetrei

Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 104–106 RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (107–108 RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.


Ilar Journal | 2013

Systems Biology of the Vervet Monkey

Anna J. Jasinska; Christopher A. Schmitt; Rita M. Cantor; Ken Dewar; James D. Jentsch; Jay R. Kaplan; Trudy R. Turner; Wesley C. Warren; George M. Weinstock; Roger P. Woods; Nelson B. Freimer

Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations.


Journal of Virology | 2014

Factors Associated with Siman Immunodeficiency Virus Transmission in a Natural African Nonhuman Primate Host in the Wild

Dongzhu Ma; Anna J. Jasinska; Felix Feyertag; Viskam Wijewardana; Jan Kristoff; Tianyu He; Kevin Raehtz; Christopher A. Schmitt; Yoon Jung; Jennifer Danzy Cramer; Michel M. Dione; Martin Antonio; Russell P. Tracy; Trudy R. Turner; David Robertson; Ivona Pandrea; Nelson B. Freimer; Cristian Apetrei

ABSTRACT African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.


Mbio | 2015

Variable responses of human and non-human primate gut microbiomes to a Western diet

Katherine R. Amato; Carl J. Yeoman; Gabriela Cerda; Christopher A. Schmitt; Jennifer Danzy Cramer; Margret E. Berg Miller; Andres Gomez; Trudy R. Turner; Brenda A. Wilson; Rebecca M. Stumpf; Karen E. Nelson; Bryan A. White; Rob Knight; Steven R. Leigh

BackgroundThe human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates.ResultsHere, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet.ConclusionsThese results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.


Genome Research | 2015

The genome of the vervet (Chlorocebus aethiops sabaeus)

Wesley C. Warren; Anna J. Jasinska; Raquel García-Pérez; Hannes Svardal; Chad Tomlinson; Mariano Rocchi; Nicoletta Archidiacono; Patrick Minx; Michael J. Montague; Kim Kyung; LaDeana W. Hillier; Milinn Kremitzki; Tina Graves; Colby Chiang; Jennifer F. Hughes; Nam Tran; Yu Huang; Vasily Ramensky; Oi Wa Choi; Yoon Jung; Christopher A. Schmitt; Nikoleta Juretic; Jessica Wasserscheid; Trudy R. Turner; Roger W. Wiseman; Jennifer J. Tuscher; Julie A. Karl; Jörn E. Schmitz; Roland Zahn; David H. O'Connor

We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.


Proceedings of the National Academy of Sciences of the United States of America | 2016

The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution

Leslea J. Hlusko; Christopher A. Schmitt; Tesla A. Monson; Marianne F. Brasil; Michael C. Mahaney

Significance Experimental research on mice has yielded tremendous biological insight. However, the ∼140 million y of evolution that separate mice from humans pose a hurdle to direct application of this knowledge to humans. We report here that considerable progress for identifying genetically patterned skeletal phenotypes beyond the mouse model is possible through transdisciplinary approaches that include the anatomical sciences. Indeed, anatomy and paleontology offer unique opportunities through which to develop and test hypotheses about the underlying genetic mechanisms of the skeleton for taxa that are not well suited to experimental manipulation, such as ourselves. Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.


American Journal of Primatology | 2013

Variation in scrotal color among widely distributed vervet monkey populations (Chlorocebus aethiops pygerythrus and Chlorocebus aethiops sabaeus).

Jennifer Danzy Cramer; Tegan J. Gaetano; Joseph P. Gray; Paul Grobler; Joseph G. Lorenz; Nelson B. Freimer; Christopher A. Schmitt; Trudy R. Turner

Vervet monkeys (Chlorocebus aethiops) exhibit bright blue scrotal skin which may function to mediate social interactions by acting as a socio‐sexual signal. Previous research on scrotal coloration among vervet monkeys was limited to experimental work on captive Ch. a. sabaeus, the least colorful vervet subspecies, and two field studies of the more colorful Ch. a. pygerythrus. In a study of free‐ranging and captive vervet monkeys in South Africa (Ch. pygerythrus), West Africa (Ch. a. sabaeus) and the Caribbean (Ch. a. sabaeus), we examined scrotal color variation across geographically distant subspecies. We provide an exploration of how digital photographs may be used to quantify and analyze blue and green skin coloration by examining the blue–yellow opponency channel and luminance channel as color measures. We found that that at all ages the scrotal color of Ch. a. pygerythrus males was always bluer and darker than that of Ch. a. sabaeus males. Among Ch. a. pygerythrus scrotal color becomes bluer and lightens with increasing age, while the color of Ch. a. sabaeus males also lightens, but becomes less blue with increasing age. We suggest that color variation is related to maturation and may function as an age‐related signal among Ch. a. pygerythrus and Ch. a. sabaeus. We also found color was related to three morphological features among adults. For Ch. a. pygerythrus, higher body weight is associated with more blue color and longer canine length is associated with lighter color. Lighter color was associated with longer body lengths among Ch. a. sabaeus. Future studies focused on color variation within age classes are needed to examine the potential signal content of color in this species. Am. J. Primatol. 75:752–762, 2013.


Nature Genetics | 2017

Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate

Anna J. Jasinska; Ivette Zelaya; Christine B. Peterson; Rita M. Cantor; Oi-Wa Choi; Joseph DeYoung; Eleazar Eskin; Lynn A. Fairbanks; Scott C. Fears; Allison E. Furterer; Yu S. Huang; Vasily Ramensky; Christopher A. Schmitt; Hannes Svardal; Matthew J. Jorgensen; Jay R. Kaplan; Diego Villar; Bronwen Aken; Paul Flicek; Rishi Nag; Emily S. W. Wong; John Blangero; Thomas D. Dyer; Marina Bogomolov; Yoav Benjamini; George M. Weinstock; Ken Dewar; Chiara Sabatti; Richard Wilson; J. David Jentsch

By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.


American Journal of Physical Anthropology | 2016

Localized population divergence of vervet monkeys (Chlorocebus spp.) in South Africa: Evidence from mtDNA

Trudy R. Turner; Willem G. Coetzer; Christopher A. Schmitt; Joseph G. Lorenz; Nelson B. Freimer; J. Paul Grobler

OBJECTIVE Vervet monkeys are common in most tree-rich areas of South Africa, but their absence from grassland and semi-desert areas of the country suggest potentially restricted and mosaic local population patterns that may have relevance to local phenotype patterns and selection. A portion of the mitochondrial DNA control region was sequenced to study patterns of genetic differentiation. METHODS DNA was extracted, and mitochondrial DNA sequences were obtained from 101 vervet monkeys at 15 localities, which represent both an extensive (widely across the distribution range) and intensive (more than one troop at most of the localities) sampling strategy. Analyses utilized Arlequin 3.1, MEGA 6, BEAST v1.5.2, and Network V3.6.1. RESULTS The dataset contained 26 distinct haplotypes, with six populations fixed for single haplotypes. Pairwise P-distance among population pairs showed significant differentiation among most population pairs, but with nonsignificant differences among populations within some regions. Populations were grouped into three broad clusters in a maximum likelihood phylogenetic tree and a haplotype network. These clusters correspond to i) north-western, northern, and north-eastern parts of the distribution range as well as the northern coastal belt; ii) central areas of the country; and iii) southern part of the Indian Ocean coastal belt and adjacent inland areas. CONCLUSIONS Apparent patterns of genetic structure correspond to current and past distribution of suitable habitat, geographic barriers to gene flow, geographic distance, and female philopatry. However, further work on nuclear markers and other genomic data are necessary to confirm these results.

Collaboration


Dive into the Christopher A. Schmitt's collaboration.

Top Co-Authors

Avatar

Trudy R. Turner

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Danzy Cramer

American Public University System

View shared research outputs
Top Co-Authors

Avatar

Yoon Jung

University of California

View shared research outputs
Top Co-Authors

Avatar

J. Paul Grobler

University of the Free State

View shared research outputs
Top Co-Authors

Avatar

Anthony Di Fiore

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongzhu Ma

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

George M. Weinstock

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge