Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongzhu Ma is active.

Publication


Featured researches published by Dongzhu Ma.


Journal of Clinical Investigation | 2014

Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication

Jan Kristoff; George Haret-Richter; Dongzhu Ma; Ruy M. Ribeiro; Cuiling Xu; Elaine Cornell; Jennifer L. Stock; Tianyu He; Adam D. Mobley; Samantha Ross; Anita Trichel; Cara C. Wilson; Russell P. Tracy; Alan Landay; Cristian Apetrei; Ivona Pandrea

Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS.


Blood | 2012

Coagulation biomarkers predict disease progression in SIV-infected nonhuman primates.

Ivona Pandrea; Elaine Cornell; Cara C. Wilson; Ruy M. Ribeiro; Dongzhu Ma; Jan Kristoff; Cuiling Xu; George Haret-Richter; Anita Trichel; Cristian Apetrei; Alan Landay; Russell P. Tracy

HIV infection is associated with increased risk of cardiovascular complications, the underlying mechanism of which remains unclear. Plasma levels of the coagulation biomarker D-dimer (DD) correlate with increased mortality and cardiovascular events in HIV-infected patients. We compared the incidence of cardiovascular lesions and the levels of the coagulation markers DD and thrombin antithrombin in pathogenic SIV infections of rhesus and pigtailed macaques (PTMs) and in nonpathogenic SIV infection of African green monkeys (AGMs) and sooty mangabeys. Hypercoagulability and cardiovascular pathology were only observed in pathogenic SIV infections. In PTMs infected with SIV from AGMs (SIVagm), DD levels were highly indicative of AIDS progression and increased mortality and were associated with cardiovascular lesions, pointing to SIVagm-infected PTMs as an ideal animal model for the study of HIV-associated cardiovascular disease. In pathogenic SIV infection, DD increased early after infection, was strongly correlated with markers of immune activation/inflammation and microbial translocation (MT), and was only peripherally associated with viral loads. Endotoxin administration to SIVagm-infected AGMs (which lack chronic SIV-induced MT and immune activation) resulted in significant increases of DD. Our results demonstrate that hypercoagulation and cardiovascular pathology are at least in part a consequence of excessive immune activation and MT in SIV infection.


PLOS Pathogens | 2013

SIVagm Infection in Wild African Green Monkeys from South Africa: Epidemiology, Natural History, and Evolutionary Considerations

Dongzhu Ma; Anna J. Jasinska; Jan Kristoff; J. Paul Grobler; Trudy R. Turner; Yoon Jung; Christopher A. Schmitt; Kevin Raehtz; Felix Feyertag; Natalie Martinez Sosa; Viskam Wijewardana; Donald S. Burke; David Robertson; Russell P. Tracy; Ivona Pandrea; Nelson B. Freimer; Cristian Apetrei

Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 104–106 RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (107–108 RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.


Journal of Virology | 2012

Mucosal Simian Immunodeficiency Virus Transmission in African Green Monkeys: Susceptibility to Infection Is Proportional to Target Cell Availability at Mucosal Sites

Ivona Pandrea; Nicholas F. Parrish; Kevin Raehtz; Thaidra Gaufin; Hannah J. Barbian; Dongzhu Ma; Jan Kristoff; Rajeev Gautam; Fang Zhong; George Haret-Richter; Anita Trichel; George M. Shaw; Beatrice H. Hahn; Cristian Apetrei

ABSTRACT African green monkeys (AGMs) are naturally infected with a simian immunodeficiency virus (SIVagm) that is nonpathogenic in its host. Although SIVagm is common and widespread, little is known about the mechanisms that govern its transmission. Since the earliest virus-host interactions may provide key insights into the nonpathogenic phenotype of SIVagm, we developed a mucosal transmission model for this virus. Using plasma from an acutely infected AGM as the virus inoculum, we exposed adult and juvenile AGMs, as well as pigtailed macaques (PTMs) as a nonnatural host control, by mucosal routes to increasing titers of virus and compared the doses needed to establish a productive infection. Four juvenile and four adult AGMs as well as two PTMs were intrarectally (IR) exposed, while two additional adult female AGMs were intravaginally (IVAG) exposed. No animal became infected following exposure to 105 RNA copies. Both PTMs but none of the AGMs became infected following exposure to 106 RNA copies. Finally, all adult AGMs and two of the four juvenile AGMs became infected following exposure to 107 RNA copies, acquiring either one (2 IR infected juveniles, 1 IR infected adult, 2 IVAG infected adults) or two (3 IR infected adults) transmitted founder viruses. These results were consistent with immunophenotypic data, which revealed a significant correlation between the percentage of CD4+ T cells expressing CCR5 in the mucosa and the susceptibility to infection, in terms of both the viral dose and the numbers of transmitted founder viruses. Moreover, studies of uninfected AGMs showed that the fraction of CCR5-expressing CD4+ T cells increased significantly with age. These results indicate that (i) AGMs are readily infected with SIVagm by both intrarectal and intravaginal routes, (ii) susceptibility to infection is proportional to the number of available CCR5+ CD4+ target cells in the mucosa, and (iii) the paucity of CCR5+ CD4+ target cells in infant and juvenile AGMs may explain the near absence of vertical transmission.


Journal of Biological Chemistry | 2008

The switch I region of Rheb is critical for its interaction with FKBP38.

Dongzhu Ma; Xiaochun Bai; Shuguang Guo; Yu Jiang

The Ras-like small GTPase Rheb is an upstream activator of the mammalian target of rapamycin (mTOR). It has recently been shown that Rheb activates mTOR by binding to its endogenous inhibitor FKBP38 and preventing it from association with mTOR. The interaction of Rheb with FKBP38 is controlled by its guanine nucleotide binding states, which are responsive to growth factor and amino acid conditions. In this study, we show that Rheb interacts with FKBP38 through a section within its switch I region that is equivalent to the effector domain of other Ras-like small GTPases. We find that the ability for Rheb to interact with FKBP38 correlates with its activity for mTOR activation. Our findings suggest that FKBP38 is a bona fide effector of Rheb and that the ability to interact with FKBP38 is important for Rheb as an activator of mTOR.


Cellular Signalling | 2010

Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling

Ming Li; Li Zhao; Jun Liu; Anling Liu; Chunhong Jia; Dongzhu Ma; Yu Jiang; Xiaochun Bai

The mammalian target of rapamycin complex 1(mTORC1) integrates diverse signals to control cell growth, proliferation, survival, and metabolism. Role of reactive oxygen species (ROS) on mTORC1 signaling remains obscure and mechanisms through which ROS modulate mTORC1 are not known.We demonstrate that low doses ROS exposure stimulate mTORC1 while high concentrations or long-term ROS treatment decrease mTORC1 activity in vivo and in a variety of cell lines. The dose/time needed for inhibition or activation are cell type dependent. In HEK293 cells hydrogen peroxide (H(2)O(2)) stimulates phosphorylation of AMP-activated kinase (AMPK) (T172) and Raptor (S792), enhances association of activated AMPK with Raptor. Furthermore, AMPK inhibitor compound c inhibits H(2)O(2)-induced Raptor (S792) phosphorylation and reverses H(2)O(2)-induced dephosphorylation of mTORC1 downstream targets p70-S6K1 (T389), S6 (S235/236) and 4E-BP1 (T37/46). H(2)O(2) also stimulates association of endogenous protein phosphatase 2A catalytic subunit (PP2Ac) with p70-S6K1. Like compound c, inhibitor of PP2A, okadaic acid partially reverses inactivation of mTORC1 substrates induced by H(2)O(2). Moreover, inhibition of PP2A and AMPK partially rescued cells from H(2)O(2)-induced cell death. High doses of H(2)O(2) inhibit while low doses of H(2)O(2) activate mTORC1 both in TSC2(-/-) P53(-/-) and TSC2(+/+) P53(-/-) MEFs. These data suggest that PP2A and AMPK-mediated phosphorylation of Raptor mediate H(2)O(2)-induced inhibition of mTORC1 signaling.


Journal of Virology | 2014

Factors Associated with Siman Immunodeficiency Virus Transmission in a Natural African Nonhuman Primate Host in the Wild

Dongzhu Ma; Anna J. Jasinska; Felix Feyertag; Viskam Wijewardana; Jan Kristoff; Tianyu He; Kevin Raehtz; Christopher A. Schmitt; Yoon Jung; Jennifer Danzy Cramer; Michel M. Dione; Martin Antonio; Russell P. Tracy; Trudy R. Turner; David Robertson; Ivona Pandrea; Nelson B. Freimer; Cristian Apetrei

ABSTRACT African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.


Journal of Biological Chemistry | 2010

Rheb GTPase Controls Apoptosis by Regulating Interaction of FKBP38 with Bcl-2 and Bcl-XL

Dongzhu Ma; Xiaochun Bai; Huafei Zou; Yumei Lai; Yu Jiang

FKBP38 is a member of the family of FK506-binding proteins that acts as an inhibitor of the mammalian target of rapamycin (mTOR). The inhibitory action of FKBP38 is antagonized by Rheb, an oncogenic small GTPase, which interacts with FKBP38 and prevents its association with mTOR. In addition to the role in mTOR regulation, FKBP38 is also involved in binding and recruiting Bcl-2 and Bcl-XL, two anti-apoptotic proteins, to mitochondria. In this study, we investigated the possibility that Rheb controls apoptosis by regulating the interaction of FKBP38 with Bcl-2 and Bcl-XL. We demonstrate in vitro that the interaction of FKBP38 with Bcl-2 is regulated by Rheb in a GTP-dependent manner. In cultured cells, the interaction is controlled by Rheb in response to changes in amino acid and growth factor conditions. Importantly, we found that the Rheb-dependent release of Bcl-XL from FKBP38 facilitates the association of this anti-apoptotic protein with the pro-apoptotic protein Bak. Consequently, when Rheb activity increases, cells become more resistant to apoptotic inducers. Our findings reveal a novel mechanism through which growth factors and amino acids control apoptosis.


PLOS ONE | 2009

A MAP Kinase Dependent Feedback Mechanism Controls Rho1 GTPase and Actin Distribution in Yeast

Shuguang Guo; Xiaoyun Shen; Gonghong Yan; Dongzhu Ma; Xiaochun Bai; Suoping Li; Yu Jiang

In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase) Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK), resulting in actin depolarization and cell wall remodeling. In this study, we demonstrate a novel feedback loop in this Rho1-mediated Pkc1-MAPK pathway that involves regulation of Rom2, the guanine nucleotide exchange factor of Rho1, by Mpk1, the end kinase of the pathway. This previously unrecognized Mpk1-depedent feedback is a critical step in regulating Rho1 function. Activation of this feedback mechanism is responsible for redistribution of Rom2 and cell wall synthesis activity from the bud to cell periphery under stress conditions. It is also required for terminating Rho1 activity toward the Pkc1-MAPK pathway and for repolarizing actin cytoskeleton and restoring growth after the stressed cells become adapted.


PLOS Pathogens | 2013

Kinetics of myeloid dendritic cell trafficking and activation: impact on progressive, nonprogressive and controlled SIV infections.

Viskam Wijewardana; Jan Kristoff; Cuiling Xu; Dongzhu Ma; George Haret-Richter; Jennifer L. Stock; Benjamin B. Policicchio; Adam D. Mobley; Rebecca Nusbaum; Hadega Aamer; Anita Trichel; Ruy M. Ribeiro; Cristian Apetrei; Ivona Pandrea

We assessed the role of myeloid dendritic cells (mDCs) in the outcome of SIV infection by comparing and contrasting their frequency, mobilization, phenotype, cytokine production and apoptosis in pathogenic (pigtailed macaques, PTMs), nonpathogenic (African green monkeys, AGMs) and controlled (rhesus macaques, RMs) SIVagmSab infection. Through the identification of recently replicating cells, we demonstrated that mDC mobilization from the bone marrow occurred in all species postinfection, being most prominent in RMs. Circulating mDCs were depleted with disease progression in PTMs, recovered to baseline values after the viral peak in AGMs, and significantly increased at the time of virus control in RMs. Rapid disease progression in PTMs was associated with low baseline levels and incomplete recovery of circulating mDCs during chronic infection. mDC recruitment to the intestine occurred in all pathogenic scenarios, but loss of mucosal mDCs was associated only with progressive infection. Sustained mDC immune activation occurred throughout infection in PTMs and was associated with increased bystander apoptosis in blood and intestine. Conversely, mDC activation occurred only during acute infection in nonprogressive and controlled infections. Postinfection, circulating mDCs rapidly became unresponsive to TLR7/8 stimulation in all species. Yet, stimulation with LPS, a bacterial product translocated in circulation only in SIV-infected PTMs, induced mDC hyperactivation, apoptosis and excessive production of proinflammatory cytokines. After infection, spontaneous production of proinflammatory cytokines by mucosal mDCs increased only in progressor PTMs. We thus propose that mDCs promote tolerance to SIV in the biological systems that lack intestinal dysfunction. In progressive infections, mDC loss and excessive activation of residual mDCs by SIV and additional stimuli, such as translocated microbial products, enhance generalized immune activation and inflammation. Our results thus provide a mechanistic basis for the role of mDCs in the pathogenesis of AIDS and elucidate the causes of mDC loss during progressive HIV/SIV infections.

Collaboration


Dive into the Dongzhu Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivona Pandrea

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jan Kristoff

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cuiling Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Anita Trichel

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Kevin Raehtz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Tianyu He

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge