Lee A. Solomon
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lee A. Solomon.
Nature | 2009
Ronald L. Koder; J.L. Ross Anderson; Lee A. Solomon; Konda S. Reddy; Christopher C. Moser; P. Leslie Dutton
The principles of natural protein engineering are obscured by overlapping functions and complexity accumulated through natural selection and evolution. Completely artificial proteins offer a clean slate on which to define and test these protein engineering principles, while recreating and extending natural functions. Here we introduce this method with the design of an oxygen transport protein, akin to human neuroglobin. Beginning with a simple and unnatural helix-forming sequence with just three different amino acids, we assembled a four-helix bundle, positioned histidines to bis-histidine ligate haems, and exploited helical rotation and glutamate burial on haem binding to introduce distal histidine strain and facilitate O2 binding. For stable oxygen binding without haem oxidation, water is excluded by simple packing of the protein interior and loops that reduce helical-interface mobility. O2 affinities and exchange timescales match natural globins with distal histidines, with the remarkable exception that O2 binds tighter than CO.
Nature Chemical Biology | 2013
Tammer A. Farid; Goutham Kodali; Lee A. Solomon; Bruce R. Lichtenstein; Molly M. Sheehan; Bryan A. Fry; Chris Bialas; Nathan M. Ennist; Jessica A Siedlecki; Zhenyu Zhao; Matthew A. Stetz; Kathleen G. Valentine; J. L. Ross Anderson; A. Joshua Wand; Bohdana M. Discher; Christopher C. Moser; P. Leslie Dutton
Emulating functions of natural enzymes in man-made constructs has proven challenging. Here we describe a man-made protein platform that reproduces many of the diverse functions of natural oxidoreductases without importing the complex and obscure interactions common to natural proteins. Our design is founded on an elementary, structurally stable 4-α-helix protein monomer with a minimalist interior malleable enough to accommodate various light- and redox-active cofactors and with an exterior tolerating extensive charge patterning for modulation of redox cofactor potentials and environmental interactions. Despite its modest size, the construct offers several independent domains for functional engineering that targets diverse natural activities, including dioxygen binding and superoxide and peroxide generation, interprotein electron transfer to natural cytochrome c and light-activated intraprotein energy transfer and charge separation approximating the core reactions of photosynthesis, cryptochrome and photolyase. The highly stable, readily expressible and biocompatible characteristics of these open-ended designs promise development of practical in vitro and in vivo applications.
Biochemical Society Transactions | 2012
Bruce R. Lichtenstein; Tammer A. Farid; Goutham Kodali; Lee A. Solomon; J. L. Ross Anderson; Molly M. Sheehan; Nathan M. Ennist; Bryan A. Fry; Sarah E. Chobot; Chris Bialas; Joshua A. Mancini; Craig T. Armstrong; Zhenyu Zhao; Tatiana V. Esipova; David Snell; Sergei A. Vinogradov; Bohdana M. Discher; Christopher C. Moser; P. Leslie Dutton
The study of natural enzymes is complicated by the fact that only the most recent evolutionary progression can be observed. In particular, natural oxidoreductases stand out as profoundly complex proteins in which the molecular roots of function, structure and biological integration are collectively intertwined and individually obscured. In the present paper, we describe our experimental approach that removes many of these often bewildering complexities to identify in simple terms the necessary and sufficient requirements for oxidoreductase function. Ours is a synthetic biology approach that focuses on from-scratch construction of protein maquettes designed principally to promote or suppress biologically relevant oxidations and reductions. The approach avoids mimicry and divorces the commonly made and almost certainly false ascription of atomistically detailed functionally unique roles to a particular protein primary sequence, to gain a new freedom to explore protein-based enzyme function. Maquette design and construction methods make use of iterative steps, retraceable when necessary, to successfully develop a protein family of sturdy and versatile single-chain three- and four-α-helical structural platforms readily expressible in bacteria. Internally, they prove malleable enough to incorporate in prescribed positions most natural redox cofactors and many more simplified synthetic analogues. External polarity, charge-patterning and chemical linkers direct maquettes to functional assembly in membranes, on nanostructured titania, and to organize on selected planar surfaces and materials. These protein maquettes engage in light harvesting and energy transfer, in photochemical charge separation and electron transfer, in stable dioxygen binding and in simple oxidative chemistry that is the basis of multi-electron oxidative and reductive catalysis.
Journal of the American Chemical Society | 2014
Lee A. Solomon; Goutham Kodali; Christopher C. Moser; P. Leslie Dutton
Timely ligation of one or more chemical cofactors at preselected locations in proteins is a critical preamble for catalysis in many natural enzymes, including the oxidoreductases and allied transport and signaling proteins. Likewise, ligation strategies must be directly addressed when designing oxidoreductase and molecular transport functions in man-made, first-principle protein constructs intended to operate in vitro or in vivo. As one of the most common catalytic cofactors in biology, we have chosen heme B, along with its chemical analogues, to determine the kinetics and barriers to cofactor incorporation and bishistidine ligation in a range of 4-α-helix proteins. We compare five elementary synthetic designs (maquettes) and the natural cytochrome b562 that differ in oligomeric forms, apo- and holo-tertiary structural stability; qualities that we show can either assist or hinder assembly. The cofactor itself also imposes an assembly barrier if amphiphilicity ranges toward too hydrophobic or hydrophilic. With progressive removal of identified barriers, we achieve maquette assembly rates as fast as native cytochrome b562, paving the way to in vivo assembly of man-made hemoprotein maquettes and integration of artificial proteins into enzymatic pathways.
Biochimica et Biophysica Acta | 2016
Bryan A. Fry; Lee A. Solomon; P. Leslie Dutton; Christopher C. Moser
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7×10(6) M(-1) s(-1) to 1.2×10(9) M(-1) s(-1) follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and -19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Journal of the American Chemical Society | 2017
Lee A. Solomon; Jacob Kronenberg; H. Christopher Fry
Self-assembling peptide materials have gained significant attention, due to well-demonstrated applications, but they are functionally underutilized. To advance their utility, we use noncovalent interactions to incorporate the biological cofactor heme-B for catalysis. Heme-proteins achieve differing functions through structural and coordinative variations. Here, we replicate this phenomenon by highlighting changes in heme reactivity as a function of coordination, sequence, and morphology (micelles versus fibers) in a series of simple peptide amphiphiles with the sequence c16-xyL3K3-CO2H where c16 is a palmitoyl moiety and xy represents the heme binding region: AA, AH, HH, and MH. The morphology of this peptide series is characterized using transmission electron and atomic force microscopies as well as dynamic light scattering. Within this small library of peptide constructs, we show that three spectroscopically (UV/visible and electron paramagnetic resonance) distinct heme environments were generated: noncoordinated/embedded high-spin, five-coordinate high-spin, and six-coordinate low-spin. The resulting materials functional dependence on sequence and supramolecular morphology is highlighted 2-fold. First, the heme active site binds carbon monoxide in both micelles and fibers, demonstrating that the heme active site in both morphologies is accessible to small molecules for catalysis. Second, peroxidase activity was observed in heme-containing micelles yet was significantly reduced in heme-containing fibers. We briefly discuss the implications these findings have in the production of functional, self-assembling peptide materials.
Biophysical Journal | 2013
Lee A. Solomon; Goutham Kodali; Christopher C. Moser; P. Leslie Dutton
Many key biological functions are accomplished through complicated system of oxidoreductases. Even though a significant number of these enzymes have been structurally characterized, attempts to reproduce their functions have not been successful. This work examines engineering of a simplified 4-alpha-helix-bundle protein, called a maquette, which lacks complexity. This feature allows us to reconcile the function of each amino acid such that mutations have more observable effects. using simple maquettes with a variety of structural topologies -ranging from molten globular tetramers to natively structured monomers - we determine what aspects of the protein structure control the rate of protein-cofactor assembly. This minimalism also allows for a more controlled study of how the electrostatic environment of the protein affects the midpoint potential of heme b. By altering charges on the surface, we were able to raise the Em of heme in maquettes by approximately 240 mV, whereas single point mutations in the heme-binding site only raised the midpoint by 10 mV. Another benefit of maquette simplicity is that they are able to bind a variety of heme b analogues. This feature allowed us to probe the effect of ring substituents on both the assembly rate and the porphyrins midpoint potential. We show that porphyrin solubility is a rate-limiting step of the assembly process and that the different ring substituents can alter the midpoint by over 400 mV. This culminates with the design of a simple two-component system wherein two proteins designed with different midpoints split by approximately 200 mV and can transfer a single electron. This work is the first step toward designing systems in which electrons can be shuttled between chains of completely artificial proteins.
Chemical Science | 2017
Goutham Kodali; Joshua A. Mancini; Lee A. Solomon; Tatiana V. Episova; Nicholas Roach; Christopher J. Hobbs; Pawel Wagner; Olga Mass; Kunche Aravindu; Jonathan E. Barnsley; Keith C. Gordon; David L. Officer; P. Leslie Dutton; Christopher C. Moser
Nature Chemical Biology | 2014
Tammer A. Farid; Goutham Kodali; Lee A. Solomon; Bruce R. Lichtenstein; Molly M. Sheehan; Bryan A. Fry; Chris Bialas; Nathan M. Ennist; Jessica A Siedlecki; Zhenyu Zhao; Matthew A. Stetz; Kathleen G. Valentine; J. L. Ross Anderson; A. Joshua Wand; Bohdana M. Discher; Christopher C. Moser; P. Leslie Dutton
Biophysical Journal | 2013
Joshua A. Mancini; Goutham Kodali; Lee A. Solomon; Nicholas Roach; J.L. Ross Anderson; Tatiana V. Esipova; Sergei A. Vinogradov; Pawel Wagner; Bohdana M. Discher; David L. Officer; Christopher C. Moser; P. Leslie Dutton