Christopher D. A. Rodrigues
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher D. A. Rodrigues.
PLOS Biology | 2016
Alexander J. Meeske; Christopher D. A. Rodrigues; Jacqueline Brady; Hoong Chuin Lim; Thomas G. Bernhardt; David Z. Rudner
The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes.
Molecular Microbiology | 2013
Christopher D. A. Rodrigues; Kathleen A. Marquis; Jeffrey Meisner; David Z. Rudner
Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother‐cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother‐cell side, however the mechanism by which SpoIIQ is localized has been unclear. Here, we show that SpoIIQ localization requires its partner protein SpoIIIAH and degradation of the septal peptidoglycan (PG) by the two cell wall hydrolases SpoIID and SpoIIP. Our data suggest that PG degradation enables a second mother‐cell‐produced protein to interact with SpoIIQ. Cells in which both mother‐cell anchoring mechanisms have been disabled have a synergistic sporulation defect suggesting that both localization factors function in the secretion complex. Finally, we show that septal PG degradation is critical for the assembly of an active complex. Altogether, these results suggest that the specialized secretion system that links the mother cell and forespore has a complexity approaching those found in Gram‐negative bacteria and reveal that the sporulating cell must overcome similar challenges in assembling a transenvelope complex.
Seminars in Cell & Developmental Biology | 2016
Hajduk; Christopher D. A. Rodrigues; Elizabeth J. Harry
Proper division site selection is crucial for the survival of all organisms. What still eludes us is how bacteria position their division site with high precision, and in tight coordination with chromosome replication and segregation. Until recently, the general belief, at least in the model organisms Bacillus subtilis and Escherichia coli, was that spatial regulation of division comes about by the combined negative regulatory mechanisms of the Min system and nucleoid occlusion. However, as we review here, these two systems cannot be solely responsible for division site selection and we highlight additional regulatory mechanisms that are at play. In this review, we put forward evidence of how chromosome replication and segregation may have direct links with cell division in these bacteria and the benefit of recent advances in chromosome conformation capture techniques in providing important information about how these three processes mechanistically work together to achieve accurate generation of progenitor cells.
Cell | 2013
Markus Mastny; Alexander Heuck; Robert Kurzbauer; Anja Heiduk; Prisca Boisguerin; Rudolf Volkmer; Michael Ehrmann; Christopher D. A. Rodrigues; David Z. Rudner; Tim Clausen
Summary Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module.
Molecular Microbiology | 2016
Nils Widderich; Christopher D. A. Rodrigues; Fabian M. Commichau; Kathleen E. Fischer; Fernando H. Ramírez-Guadiana; David Z. Rudner; Erhard Bremer
The spore‐forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation‐resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation‐specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A‐ and SigH‐dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt‐imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high‐salinity environments preventing commitment to a developmental program that it cannot complete.
Molecular Microbiology | 2016
Christopher D. A. Rodrigues; Fernando H. Ramírez-Guadiana; Alexander J. Meeske; Xindan Wang; David Z. Rudner
Sporulating Bacillus subtilis cells assemble a multimeric membrane complex connecting the mother cell and developing spore that is required to maintain forespore differentiation. An early step in the assembly of this transenvelope complex (called the A–Q complex) is an interaction between the extracellular domains of the forespore membrane protein SpoIIQ and the mother cell membrane protein SpoIIIAH. This interaction provides a platform onto which the remaining components of the complex assemble and also functions as an anchor for cell–cell signalling and morphogenetic proteins involved in spore development. SpoIIQ is required to recruit SpoIIIAH to the sporulation septum on the mother cell side; however, the mechanism by which SpoIIQ specifically localizes to the septal membranes on the forespore side has remained enigmatic. Here, we identify GerM, a lipoprotein previously implicated in spore germination, as the missing factor required for SpoIIQ localization. Our data indicate that GerM and SpoIIIAH, derived from the mother cell, and SpoIIQ, from the forespore, have reciprocal localization dependencies suggesting they constitute a tripartite platform for the assembly of the A–Q complex and a hub for the localization of mother cell and forespore proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Christopher D. A. Rodrigues; Xavier Henry; Emmanuelle Neumann; Vilius Kurauskas; Laure Bellard; Yann Fichou; Paul Schanda; Guy Schoehn; David Z. Rudner; Cécile Morlot
Significance Specialized secretion systems transport proteins across the double-membrane cell envelope of Gram-negative bacteria. Gram-positive bacteria possess a single membrane and lack many of these secretion systems. During endospore formation in Gram-positive bacteria such as Bacillus subtilis, a double-membrane envelope surrounds the developing spore. A transenvelope complex with similarities to Gram-negative specialized secretion systems spans the two membranes separating mother cell and endospore. This complex is essential for development and has been hypothesized to serve as a channel for molecular transport between the two cells. Here we show that it contains an oligomeric ring with architecture and dimensions similar to those found in type III secretion systems, providing direct evidence for a conduit connecting mother cell and developing spore. During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the “A–Q complex”) is required to maintain forespore development and is composed of proteins with remote homology to components of type II, III, and IV secretion systems found in Gram-negative bacteria. Here, we show that one of these proteins, SpoIIIAG, which has remote homology to ring-forming proteins found in type III secretion systems, assembles into an oligomeric ring in the periplasmic-like space between the two membranes. Three-dimensional reconstruction of images generated by cryo-electron microscopy indicates that the SpoIIIAG ring has a cup-and-saucer architecture with a 6-nm central pore. Structural modeling of SpoIIIAG generated a 24-member ring with dimensions similar to those of the EM-derived saucer. Point mutations in the predicted oligomeric interface disrupted ring formation in vitro and impaired forespore gene expression and efficient spore formation in vivo. Taken together, our data provide strong support for the model in which the A–Q transenvelope complex contains a conduit that connects the mother cell and forespore. We propose that a set of stacked rings spans the intermembrane space, as has been found for type III secretion systems.
PLOS Genetics | 2017
Fernando H. Ramírez-Guadiana; Alexander J. Meeske; Christopher D. A. Rodrigues; Rocío del Carmen Barajas-Ornelas; Andrew C. Kruse; David Z. Rudner
One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5–15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria.
Molecular Microbiology | 2017
Fernando H. Ramírez-Guadiana; Alexander J. Meeske; Xindan Wang; Christopher D. A. Rodrigues; David Z. Rudner
During sporulation in Bacillus subtilis, germinant receptors assemble in the inner membrane of the developing spore. In response to specific nutrients, these receptors trigger germination and outgrowth. In a transposon‐sequencing screen, we serendipitously discovered that loss of function mutations in the gerA receptor partially suppress the phenotypes of > 25 sporulation mutants. Most of these mutants have modest defects in the assembly of the spore protective layers that are exacerbated in the presence of a functional GerA receptor. Several lines of evidence indicate that these mutants inappropriately trigger the activation of GerA during sporulation resulting in premature germination. These findings led us to discover that up to 8% of wild‐type sporulating cells trigger premature germination during differentiation in a GerA‐dependent manner. This phenomenon was observed in domesticated and undomesticated wild‐type strains sporulating in liquid and on solid media. Our data indicate that the GerA receptor is poised on a knifes edge during spore development. We propose that this sensitized state ensures a rapid response to nutrient availability and also elicits premature germination of spores with improperly assembled protective layers resulting in the elimination of even mildly defective individuals from the population.
Trends in Microbiology | 2018
Cécile Morlot; Christopher D. A. Rodrigues
The transport of proteins across the bacterial cell envelope is mediated by protein complexes called specialized secretion systems. These nanomachines exist in both Gram-positive and Gram-negative bacteria and have been categorized into different types based on their structural components and function. Interestingly, multiple studies suggest the existence of a protein complex in endospore-forming bacteria that appears to be a new type of specialized secretion system. This protein complex is called the SpoIIIA-SpoIIQ complex and is an exception to the categorical norm since it appears to be a hybrid composed of different parts from well-defined specialized secretion systems. Here we summarize and discuss the current understanding of this complex and its potential role as a specialized secretion system.