Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher D. Freel is active.

Publication


Featured researches published by Christopher D. Freel.


Cold Spring Harbor Perspectives in Biology | 2013

Cellular Mechanisms Controlling Caspase Activation and Function

Amanda B. Parrish; Christopher D. Freel; Sally Kornbluth

Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death.


Nature Cell Biology | 2009

PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation

Judy Wu; Jessie Yanxiang Guo; Wanli Tang; Chih-Sheng Yang; Christopher D. Freel; Chen Chen; Angus C. Nairn; Sally Kornbluth

Loss of cell division cycle 2 (Cdc2, also known as Cdk1) activity after cyclin B degradation is necessary, but not sufficient, for mitotic exit. Proteins phosphorylated by Cdc2 and downstream mitotic kinases must be dephosphorylated. We report here that protein phosphatase-1 (PP1) is the main catalyst of mitotic phosphoprotein dephosphorylation. Suppression of PP1 during early mitosis is maintained through dual inhibition by Cdc2 phosphorylation and the binding of inhibitor-1. Protein kinase A (PKA) phosphorylates inhibitor-1, mediating binding to PP1. As Cdc2 levels drop after cyclin B degradation, auto-dephosphorylation of PP1 at its Cdc2 phosphorylation site (Thr 320) allows partial PP1 activation. This promotes PP1-regulated dephosphorylation at the activating site of inhibitor-1 (Thr 35) followed by dissociation of the inhibitor-1–PP1 complex and then full PP1 activation to promote mitotic exit. Thus, Cdc2 both phosphorylates multiple mitotic substrates and inhibits their PP1-mediated dephosphorylation.


The EMBO Journal | 2009

Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2

Joshua L. Andersen; Carrie E. Johnson; Christopher D. Freel; Amanda B. Parrish; Jennifer L Day; Marisa R. Buchakjian; Leta K. Nutt; J. Will Thompson; M. Arthur Moseley; Sally Kornbluth

The apoptotic initiator caspase‐2 has been implicated in oocyte death, in DNA damage‐ and heat shock‐induced death, and in mitotic catastrophe. We show here that the mitosis‐promoting kinase, cdk1–cyclin B1, suppresses apoptosis upstream of mitochondrial cytochrome c release by phosphorylating caspase‐2 within an evolutionarily conserved sequence at Ser 340. Phosphorylation of this residue, situated in the caspase‐2 interdomain, prevents caspase‐2 activation. S340 was susceptible to phosphatase 1 dephosphorylation, and an interaction between phosphatase 1 and caspase‐2 detected during interphase was lost in mitosis. Expression of S340A non‐phosphorylatable caspase‐2 abrogated mitotic suppression of caspase‐2 and apoptosis in various settings, including oocytes induced to undergo cdk1‐dependent maturation. Moreover, U2OS cells treated with nocodazole were found to undergo mitotic catastrophe more readily when endogenous caspase‐2 was replaced with the S340A mutant to lift mitotic inhibition. These data demonstrate that for apoptotic stimuli transduced by caspase‐2, cell death is prevented during mitosis through the inhibitory phosphorylation of caspase‐2 and suggest that under conditions of mitotic arrest, cdk1–cyclin B1 activity must be overcome for apoptosis to occur.


Developmental Cell | 2009

Metabolic Control of Oocyte Apoptosis Mediated by 14-3-3ζ-Regulated Dephosphorylation of Caspase-2

Leta K. Nutt; Marisa R. Buchakjian; Eugene Gan; Rashid Darbandi; Sook Young Yoon; Judy Wu; Yuko J. Miyamoto; Jennifer A. Gibbon; Josh L. Andersen; Christopher D. Freel; Wanli Tang; Changli He; Manabu Kurokawa; Yongjun Wang; Seth S. Margolis; Rafael A. Fissore; Sally Kornbluth

Xenopus oocyte death is partly controlled by the apoptotic initiator caspase-2 (C2). We reported previously that oocyte nutrient depletion activates C2 upstream of mitochondrial cytochrome c release. Conversely, nutrient-replete oocytes inhibit C2 via S135 phosphorylation catalyzed by calcium/calmodulin-dependent protein kinase II. We now show that C2 phosphorylated at S135 binds 14-3-3zeta, thus preventing C2 dephosphorylation. Moreover, we determined that S135 dephosphorylation is catalyzed by protein phosphatase-1 (PP1), which directly binds C2. Although C2 dephosphorylation is responsive to metabolism, neither PP1 activity nor binding is metabolically regulated. Rather, release of 14-3-3zeta from C2 is controlled by metabolism and allows for C2 dephosphorylation. Accordingly, a C2 mutant unable to bind 14-3-3zeta is highly susceptible to dephosphorylation. Although this mechanism was initially established in Xenopus, we now demonstrate similar control of murine C2 by phosphorylation and 14-3-3 binding in mouse eggs. These findings provide an unexpected evolutionary link between 14-3-3 and metabolism in oocyte death.


Molecular Biology of the Cell | 2011

Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability

Sarah R. Horn; Michael J. Thomenius; Erika Segear Johnson; Christopher D. Freel; Judy Wu; Jonathan L. Coloff; Chih-Sheng Yang; Wanli Tang; Olga Ilkayeva; Jeffrey C. Rathmell; Christopher B. Newgard; Sally Kornbluth

Mitochondria form an interconnected network that undergoes dynamin-related protein 1 (Drp1)-dependent fission during mitosis. We demonstrate that changes in mitochondrial dynamics as cells exit mitosis are driven through ubiquitylation of Drp1 by the (anaphase- promoting complex/cyclosome and its coactivator Cdh1) APC/CCdh1 complex. Inhibition Drp1 degradation prevents the normal regrowth of mitochondrial networks during G1 phase.


Current Biology | 2007

A Role for Cdc2- and PP2A-Mediated Regulation of Emi2 in the Maintenance of CSF Arrest

Qiju Wu; Yanxiang Guo; Ayumi Yamada; Jennifer A. Perry; Michael Z. Wang; Marito Araki; Christopher D. Freel; Jeffrey J. Tung; Wanli Tang; Seth S. Margolis; Peter K. Jackson; Hiroyuki Yamano; Maki Asano; Sally Kornbluth

BACKGROUND Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell-cycle arrest by inhibiting the anaphase-promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood. RESULTS We report here the molecular details of a negative feedback loop wherein Cyclin B promotes its own destruction through Cdc2/Cyclin B-mediated phosphorylation and inhibition of the APC inhibitor Emi2. Emi2 bound to the core APC, and this binding was disrupted by Cdc2/Cyclin B, without affecting Emi2 protein stability. Cdc2-mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 and promote Emi2-APC interactions. CONCLUSIONS Constant Cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 activity. A balance between Cdc2 and PP2A controls Emi2 phosphorylation, which in turn controls the ability of Emi2 to bind to and inhibit the APC. This balance allows proper maintenance of Cyclin B levels and Cdc2 kinase activity during CSF arrest.


Current Biology | 2008

Aven-Dependent Activation of ATM Following DNA Damage

Jessie Yanxiang Guo; Ayumi Yamada; Taisuke Kajino; Judy Wu; Wanli Tang; Christopher D. Freel; Junjie Feng; B. Nelson Chau; Michael Zhuo Wang; Seth S. Margolis; Hae Yong Yoo; Xiao-Fan Wang; William G. Dunphy; Pablo M. Irusta; J. Marie Hardwick; Sally Kornbluth

BACKGROUND In response to DNA damage, cells undergo either cell-cycle arrest or apoptosis, depending on the extent of damage and the cells capacity for DNA repair. Cell-cycle arrest induced by double-stranded DNA breaks depends on activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell-cycle effectors such as Chk2 and p53 to inhibit cell-cycle progression. ATM is recruited to double-stranded DNA breaks by a complex of sensor proteins, including Mre11/Rad50/Nbs1, resulting in autophosphorylation, monomerization, and activation of ATM kinase. RESULTS In characterizing Aven protein, a previously reported apoptotic inhibitor, we have found that Aven can function as an ATM activator to inhibit G2/M progression. Aven bound to ATM and Aven overexpressed in cycling Xenopus egg extracts prevented mitotic entry and induced phosphorylation of ATM and its substrates. Immunodepletion of endogenous Aven allowed mitotic entry even in the presence of damaged DNA, and RNAi-mediated knockdown of Aven in human cells prevented autophosphorylation of ATM at an activating site (S1981) in response to DNA damage. Interestingly, Aven is also a substrate of the ATM kinase. Mutation of ATM-mediated phosphorylation sites on Aven reduced its ability to activate ATM, suggesting that Aven activation of ATM after DNA damage is enhanced by ATM-mediated Aven phosphorylation. CONCLUSIONS These results identify Aven as a new ATM activator and describe a positive feedback loop operating between Aven and ATM. In aggregate, these findings place Aven, a known apoptotic inhibitor, as a critical transducer of the DNA-damage signal.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Control of Emi2 activity and stability through Mos-mediated recruitment of PP2A.

Judy Wu; David V. Hansen; Yanxiang Guo; Michael Zhuo Wang; Wanli Tang; Christopher D. Freel; Jeffrey J. Tung; Peter K. Jackson; Sally Kornbluth

Before fertilization, vertebrate eggs are arrested in meiosis II by cytostatic factor (CSF), which holds the anaphase-promoting complex (APC) in an inactive state. It was recently reported that Mos, an integral component of CSF, acts in part by promoting the Rsk-mediated phosphorylation of the APC inhibitor Emi2/Erp1. We report here that Rsk phosphorylation of Emi2 promotes its interaction with the protein phosphatase PP2A. Emi2 residues adjacent to the Rsk phosphorylation site were important for PP2A binding. An Emi2 mutant that retained Rsk phosphorylation but lacked PP2A binding could not be modulated by Mos. PP2A bound to Emi2 acted on two distinct clusters of sites phosphorylated by Cdc2, one responsible for modulating its stability during CSF arrest and one that controls binding to the APC. These findings provide a molecular mechanism for Mos action in promoting CSF arrest and also define an unusual mechanism, whereby protein phosphorylation recruits a phosphatase for dephosphorylation of distinct sites phosphorylated by another kinase.


Molecular Cell | 2011

A Biotin Switch-Based Proteomics Approach Identifies 14-3-3ζ as a Target of Sirt1 in the Metabolic Regulation of Caspase-2

Joshua L. Andersen; J. Will Thompson; Kelly R. Lindblom; Erika Segear Johnson; Chih-Sheng Yang; Lauren R. Lilley; Christopher D. Freel; M. Arthur Moseley; Sally Kornbluth

While lysine acetylation in the nucleus is well characterized, comparatively little is known about its significance in cytoplasmic signaling. Here we show that inhibition of the Sirt1 deacetylase, which is primarily cytoplasmic in cancer cell lines, sensitizes these cells to caspase-2-dependent death. To identify relevant Sirt1 substrates, we developed a proteomics strategy, enabling the identification of a range of putative substrates, including 14-3-3ζ, a known direct regulator of caspase-2. We show here that inhibition of Sirtuin activity accelerates caspase activation and overrides caspase-2 suppression by nutrient abundance. Furthermore, 14-3-3ζ is acetylated prior to caspase activation, and supplementation of Xenopus egg extract with glucose-6-phosphate, which promotes caspase-2/14-3-3ζ binding, enhances 14-3-3ζ-directed Sirtuin activity. Conversely, inhibiting Sirtuin activity promotes14-3-3ζ dissociation from caspase-2 in both egg extract and human cultured cells. These data reveal a role for Sirt1 in modulating apoptotic sensitivity, in response to metabolic changes, by antagonizing 14-3-3ζ acetylation.


Current Biology | 2007

Differential Susceptibility of Yeast S and M Phase CDK Complexes to Inhibitory Tyrosine Phosphorylation

Mignon A. Keaton; Elaine S.G. Bardes; Aron R. Marquitz; Christopher D. Freel; Trevin R. Zyla; Johannes Rudolph; Daniel J. Lew

BACKGROUND Several checkpoint pathways employ Wee1-mediated inhibitory tyrosine phosphorylation of cyclin-dependent kinases (CDKs) to restrain cell-cycle progression. Whereas in vertebrates this strategy can delay both DNA replication and mitosis, in yeast cells only mitosis is delayed. This is particularly surprising because yeasts, unlike vertebrates, employ a single family of cyclins (B type) and the same CDK to promote both S phase and mitosis. The G2-specific arrest could be explained in two fundamentally different ways: tyrosine phosphorylation of cyclin/CDK complexes could leave sufficient residual activity to promote S phase, or S phase-promoting cyclin/CDK complexes could somehow be protected from checkpoint-induced tyrosine phosphorylation. RESULTS We demonstrate that in Saccharomyces cerevisiae, several cyclin/CDK complexes are protected from inhibitory tyrosine phosphorylation, allowing Clb5,6p to promote DNA replication and Clb3,4p to promote spindle assembly, even under checkpoint-inducing conditions that block nuclear division. In vivo, S phase-promoting Clb5p/Cdc28p complexes were phosphorylated more slowly and dephosphorylated more effectively than were mitosis-promoting Clb2p/Cdc28p complexes. Moreover, we show that the CDK inhibitor (CKI) Sic1p protects bound Clb5p/Cdc28p complexes from tyrosine phosphorylation, allowing the accumulation of unphosphorylated complexes that are unleashed when Sic1p is degraded to promote S phase. The vertebrate CKI p27(Kip1) similarly protects Cyclin A/Cdk2 complexes from Wee1, suggesting that the antagonism between CKIs and Wee1 is evolutionarily conserved. CONCLUSIONS In yeast cells, the combination of CKI binding and preferential phosphorylation/dephosphorylation of different B cyclin/CDK complexes renders S phase progression immune from checkpoints acting via CDK tyrosine phosphorylation.

Collaboration


Dive into the Christopher D. Freel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judy Wu

University of Kansas

View shared research outputs
Top Co-Authors

Avatar

Kurt O. Gilliland

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

M. Joseph Costello

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge