Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Joseph Costello is active.

Publication


Featured researches published by M. Joseph Costello.


Hepatology | 2011

Lineage Restriction of Human Hepatic Stem Cells to Mature Fates Is Made Efficient by Tissue-Specific Biomatrix Scaffolds

Yunfang Wang; Cai Bin Cui; Mitsuo Yamauchi; Patricia A. Miguez; Marsha Lynn Roach; Richard Harold Malavarca; M. Joseph Costello; Vincenzo Cardinale; Eliane Wauthier; Claire Barbier; David A. Gerber; Domenico Alvaro; Lola M. Reid

Current protocols for differentiation of stem cells make use of multiple treatments of soluble signals and/or matrix factors and result typically in partial differentiation to mature cells with under‐ or overexpression of adult tissue‐specific genes. We developed a strategy for rapid and efficient differentiation of stem cells using substrata of biomatrix scaffolds, tissue‐specific extracts enriched in extracellular matrix, and associated growth factors and cytokines, in combination with a serum‐free, hormonally defined medium (HDM) tailored for the adult cell type of interest. Biomatrix scaffolds were prepared by a novel, four‐step perfusion decellularization protocol using conditions designed to keep all collagen types insoluble. The scaffolds maintained native histology, patent vasculatures, and ≈1% of the tissues proteins but >95% of its collagens, most of the tissues collagen‐associated matrix components, and physiological levels of matrix‐bound growth factors and cytokines. Collagens increased from almost undetectable levels to >15% of the scaffolds proteins with the remainder including laminins, fibronectins, elastin, nidogen/entactin, proteoglycans, and matrix‐bound cytokines and growth factors in patterns that correlate with histology. Human hepatic stem cells (hHpSCs), seeded onto liver biomatrix scaffolds and in an HDM tailored for adult liver cells, lost stem cell markers and differentiated to mature, functional parenchymal cells in ≈1 week, remaining viable and with stable mature cell phenotypes for more than 8 weeks. Conclusion: Biomatrix scaffolds can be used for biological and pharmaceutical studies of lineage‐restricted stem cells, for maintenance of mature cells, and, in the future, for implantable, vascularized engineered tissues or organs. (HEPATOLOGY 2011.)


Journal of Biological Chemistry | 2008

Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin

Richard D. S. Dixon; Daniel K. Arneman; Andrew Rachlin; Naresh R. Sundaresan; M. Joseph Costello; Sharon L. Campbell; Carol A. Otey

Palladin is a recently described phosphoprotein that plays an important role in cell adhesion and motility. Previous studies have shown that palladin overexpression results in profound changes in actin organization in cultured cells. Palladin binds to the actin-associated proteins α-actinin, vasodilator-stimulated phosphoprotein, profilin, Eps8, and ezrin, suggesting that it may affect actin organization indirectly. To determine its molecular function in generating actin arrays, we purified palladin and asked if it is also capable of binding to F-actin directly. In co-sedimentation and differential sedimentation assays, palladin was found to both bind and cross-link actin filaments. This bundling activity was confirmed by fluorescence and electron microscopy. Palladin fragments were then purified and used to determine the sequences necessary to bind and bundle F-actin. The Ig3 domain of palladin bound to F-actin, and a palladin fragment containing Ig3, Ig4, and the region linking these domains was identified as a fragment that was able to bundle F-actin. Because palladin has multiple Ig domains, and only one of them binds to F-actin, this suggests that different Ig domains may be specialized for distinct biological functions. In addition, our results suggest a potential role for palladin in generating specialized, actin-based cell morphologies via both direct actin cross-linking activity and indirect scaffolding activity.


Experimental Eye Research | 2013

Autophagy and mitophagy participate in ocular lens organelle degradation

M. Joseph Costello; Lisa A. Brennan; Subhasree Basu; Daniel Chauss; Ashik Mohamed; Kurt O. Gilliland; Sönke Johnsen; A. Sue Menko; Marc Kantorow

The eye lens consists of a layer of epithelial cells that overlay a series of differentiating fiber cells that upon maturation lose their mitochondria, nuclei and other organelles. Lens transparency relies on the metabolic function of mitochondria contained in the lens epithelial cells and in the immature fiber cells and the programmed degradation of mitochondria and other organelles occurring upon lens fiber cell maturation. Loss of lens mitochondrial function in the epithelium or failure to degrade mitochondria and other organelles in lens fiber cells results in lens cataract formation. To date, the mechanisms that govern the maintenance of mitochondria in the lens and the degradation of mitochondria during programmed lens fiber cell maturation have not been fully elucidated. Here, we demonstrate using electron microscopy and dual-label confocal imaging the presence of autophagic vesicles containing mitochondria in lens epithelial cells, immature lens fiber cells and during early stages of lens fiber cell differentiation. We also show that mitophagy is induced in primary lens epithelial cells upon serum starvation. These data provide evidence that autophagy occurs throughout the lens and that mitophagy functions in the lens to remove damaged mitochondria from the lens epithelium and to degrade mitochondria in the differentiating lens fiber cells for lens development. The results provide a novel mechanism for how mitochondria are maintained to preserve lens metabolic function and how mitochondria are degraded upon lens fiber cell maturation.


BMC Ophthalmology | 2003

Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy

Christopher D. Freel; K. J. Al-Ghoul; Jer R. Kuszak; M. Joseph Costello

BackgroundCompaction of human ocular lens fiber cells as a function of both aging and cataractogenesis has been demonstrated previously using scanning electron microscopy. The purpose of this investigation is to quantify morphological differences in the inner nuclear regions of cataractous and non-cataractous human lenses from individuals with diabetes. The hypothesis is that, even in the presence of the osmotic stress caused by diabetes, compaction rather than swelling occurs in the nucleus of diabetic lenses.MethodsTransparent and nuclear cataractous lenses from diabetic patients were examined by scanning electron microscopy (SEM). Measurements of the fetal nuclear (FN) elliptical angles (anterior and posterior), embryonic nuclear (EN) anterior-posterior (A-P) axial thickness, and the number of EN fiber cell membrane folds over 20 μm were compared.ResultsDiabetic lenses with nuclear cataract exhibited smaller FN elliptical angles, smaller EN axial thicknesses, and larger numbers of EN compaction folds than their non-cataractous diabetic counterparts.ConclusionAs in non-diabetic lenses, the inner nuclei of cataractous lenses from diabetics were significantly more compacted than those of non-cataractous diabetics. Little difference between diabetic and non-diabetic compaction levels was found, suggesting that diabetes does not affect the degree of compaction. However, consistent with previous proposals, diabetes does appear to accelerate the formation of cataracts that are similar to age-related nuclear cataracts in non-diabetics. We conclude that as scattering increases in the diabetic lens with cataract formation, fiber cell compaction is significant.


Experimental Eye Research | 2003

Ultrastructural characterization and Fourier analysis of fiber cell cytoplasm in the hyperbaric oxygen treated guinea pig lens opacification model

Christopher D. Freel; Kurt O. Gilliland; Harold E. Mekeel; Frank J. Giblin; M. Joseph Costello

The structural characteristics of differentiated fiber cells in control and hyperbaric oxygen (HBO)-treated guinea pig lenses were examined by transmission electron microscopy (TEM). Emphasis was placed on cell damage, membrane integrity, and cytoplasmic texture. Given the faint gross opacities observed in HBO-treated lenses in previous studies, it was hypothesized that subtle but significant morphological differences due to oxidative damage exist between control and treated animals. Experimental animals received either 70 or 85 treatments with HBO (2.5 atm of 100% O(2) for 2.5 hr, 3 times per week for 5-7 months). All specimens were obtained within 24 hr of death. Freshly cut Vibratome lens sections were fixed and processed for low and high-magnification thin-section TEM analysis. Cytoplasmic texture was analyzed using Fourier and autocorrelation image processing techniques. Low-magnification analysis revealed relatively insignificant differences in general appearance between the fiber cells of the inner fetal and embryonic nuclei in control and HBO-treated guinea pigs. Both groups demonstrated cells of similar morphology with equivalent membrane complexity and homogeneous cytoplasmic texture. Evidence of any major cellular damage or extracellular space debris was not obvious. High-magnification analysis of the cytoplasm of the treated lenses exhibited a mild, yet detectable increase in texture compared with controls and was confirmed by Fourier analysis. Cytoplasmic texture increased in complexity with additional treatments. The absence of major cellular damage in the lenses of HBO-treated animals suggests a less conspicuous source of light scattering. The small changes in cytoplasmic organization observed between treated and control animals may entirely account for the increase in nuclear light scattering observed by slit lamp. The results obtained with this guinea pig/HBO model parallel many of the morphological data associated with human nuclear cataracts. The high-angle scattering observed in the lens of the HBO-treated guinea pig may represent the type of cytoplasmic reorganization that occurs with mild oxidation, effectively making it a valuable model for human lens aging.


Ultrastructural Pathology | 2006

Cryo-electron microscopy of biological samples

M. Joseph Costello

A brief summary of current cryo–electron microscopy methods for processing and imaging biological tissues is provided. The main emphasis is given to two preparation procedures: frozen-hydrated samples because of the remarkable success of cryo-electron crystallography in obtaining near atomic resolution of integral membrane proteins, and high-pressure freezing because of the wide applicability for vitrification of large samples of normal and diseased tissues for ultrastructural and immunolabeling analysis. Methods for examining certain samples with a TEM cryo-stage are summarized. This includes an introduction to the relatively new area of cryo-electron tomography, which offers the possibility to observe the three-dimensional structure of subcellular components using only their natural variations in composition to generate contrast.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus

Andrew J. Monteith; SunAh Kang; Eric Scott; Kai Hillman; Zenon Rajfur; Ken Jacobson; M. Joseph Costello; Barbara J. Vilen

Significance Activation of innate sensors by self-antigen contributes to autoimmunity, although how intracellular sensors are chronically exposed to self-antigen has remained unknown. Here, we identify a previously unidentified defect in which lupus-prone macrophages fail to mature the lysosome, promoting the accumulation of apoptotic debris-containing IgG–immune complexes (IgG-ICs). Interestingly, macrophages from other autoimmune diseases accumulate IgG-ICs, indicating that lysosomal defects may underlie multiple autoimmune diseases. Furthermore, the prolonged intracellular residency chronically activates Toll-like receptors and permeabilizes the phagolysosomal membrane, allowing activation of cytosolic sensors. These findings identify lysosomal maturation as a unique defect in MRL/lpr mice that impacts multiple events known to underlie SLE, including pathogenic cytokine secretion. Defects in clearing apoptotic debris disrupt tissue and immunological homeostasis, leading to autoimmune and inflammatory diseases. Herein, we report that macrophages from lupus-prone MRL/lpr mice have impaired lysosomal maturation, resulting in heightened ROS production and attenuated lysosomal acidification. Impaired lysosomal maturation diminishes the ability of lysosomes to degrade apoptotic debris contained within IgG–immune complexes (IgG-ICs) and promotes recycling and the accumulation of nuclear self-antigens at the membrane 72 h after internalization. Diminished degradation of IgG-ICs prolongs the intracellular residency of nucleic acids, leading to the activation of Toll-like receptors. It also promotes phagosomal membrane permeabilization, allowing dsDNA and IgG to leak into the cytosol and activate AIM2 and TRIM21. Collectively, these events promote the accumulation of nuclear antigens and activate innate sensors that drive IFNα production and heightened cell death. These data identify a previously unidentified defect in lysosomal maturation that provides a mechanism for the chronic activation of intracellular innate sensors in systemic lupus erythematosus.


Experimental Eye Research | 2010

Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts

M. Joseph Costello; Sönke Johnsen; S. Metlapally; Kurt O. Gilliland; Lesley Frame; Dorairajan Balasubramanian

The goal of this project was to determine the relative refractive index (RI) of the interior of multilamellar bodies (MLBs) compared to the adjacent cytoplasm within human nuclear fiber cells. MLBs have been characterized previously as 1-4 μm diameter spherical particles covered by multiple lipid bilayers surrounding a cytoplasmic core of variable density. Age-related nuclear cataracts have more MLBs than transparent donor lenses and were predicted to have high forward scattering according to Mie scattering theory, assuming different RIs for the MLB and cytoplasm. In this study quantitative values of relative RI were determined from specific MLBs in electron micrographs of thin sections and used to calculate new Mie scattering plots. Fresh lenses were Vibratome sectioned, immersion fixed and en bloc stained with osmium tetroxide and uranyl acetate, or uranyl acetate alone, prior to dehydration and embedding in epoxy or acrylic resins. Thin sections 70 nm thick were cut on a diamond knife and imaged without grid stains at 60 kV using a CCD camera on a transmission electron microscope (TEM). Integrated intensities in digital electron micrographs were related directly to protein density, which is linearly related to RI for a given substance. The RI of the MLB interior was calculated assuming an RI value of 1.42 for the cytoplasm from the literature. Calculated RI values for MLBs ranged from 1.35 to 1.53. Thus, some MLBs appeared to have interior protein densities similar to or less than the adjacent cytoplasm whereas others had significantly higher densities. The higher density MLBs occurred preferentially in older and more advanced cataracts suggesting a maturation process. The bilayer coats were more often observed in MLBs from transparent donors and early stage cataracts indicating that bilayer loss was part of the MLB maturation, producing large low-density spaces around dense MLB cores. These spaces were frequently observed in advanced cataracts from India as large low-density crescents and annular rings. Predicted scattering from Mie plots using particles with dense cores and low-density rims was higher than reported previously, although the most important factor was the relative RI, not the MLB coat or lack thereof. In conclusion, the measurements confirm the high protein density and RI of some MLB interiors compared to adjacent cytoplasm. This high RI ratio used in the Mie calculations suggests that for 2000 MLBs/mm³, about half that reported for early stage nuclear cataracts from the US, the forward scattering could be more than 30% of the incident light. Therefore, the extent of forward scattering and its influence on macular visual acuity could be important components of ophthalmological evaluations of cataract patients.


Experimental Eye Research | 2012

Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts.

M. Joseph Costello; Alain Burette; Mariko Weber; S. Metlapally; Kurt O. Gilliland; W. Craig Fowler; Ashik Mohamed; Sönke Johnsen

Human nuclear cataract formation is a multi-factorial disease with contributions to light scattering from many cellular sources that change their scattering properties over decades. The aging process produces aggregation of cytoplasmic crystallin proteins, which alters the protein packing and texture of the cytoplasm. Previous studies of the cytoplasmic texture quantified increases in density fluctuations in protein packing and theoretically predicted the corresponding scattering. Multilamellar bodies (MLBs) are large particles with a core of crystallin cytoplasm that have been suggested to be major sources of scattering in human nuclei. The core has been shown to condense over time such that the refractive index increases compared to the adjacent aged and textured cytoplasm. Electron tomography is used here to visualize the 3D arrangement of protein aggregates in aged and cataractous lens nuclear cytoplasm compared to the dense protein packing in the cores of MLBs. Thin sections, 70 nm thick, were prepared from epoxy-embedded human transparent donor lenses and nuclear cataracts. Tilt series were collected on an FEI T20 transmission electron microscope (TEM) operated at 200 kV using 15 nm gold particles as fiducial markers. Images were aligned and corrected with FEI software and reconstructed with IMOD and other software packages to produce animated tilt series and stereo anaglyphs. The 3D views of protein density showed the relatively uniform packing of proteins in aged transparent lens nuclear cytoplasm and less dense packing of aged cataractous cytoplasm where many low-density regions can be appreciated in the absence of the TEM projection artifacts. In contrast the cores of the MLBs showed a dense packing of protein with minimal density fluctuations. These observations support the conclusion that, during the nuclear cataract formation, alterations in protein packing are extensive and can result in pronounced density fluctuations. Aging causes the MLB cores to become increasingly different in their protein packing from the adjacent cytoplasm. These results support the hypothesis that the MLBs increase their scattering with age and nuclear cataract formation.


PLOS ONE | 2016

Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells

M. Joseph Costello; Lisa A. Brennan; Ashik Mohamed; Kurt O. Gilliland; Sönke Johnsen; Marc Kantorow

An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12–15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial-like projections appear to be initiated with a clathrin-like coat and driven by an internal actin network. In summary, a specialized cellular organelle, the nuclear excisosome, generated in part by adjacent fiber cells degrades nuclei during fiber cell differentiation and maturation.

Collaboration


Dive into the M. Joseph Costello's collaboration.

Top Co-Authors

Avatar

Kurt O. Gilliland

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashik Mohamed

L V Prasad Eye Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Metlapally

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

W. Craig Fowler

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew Rachlin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Carol A. Otey

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Daniel K. Arneman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jer R. Kuszak

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge