Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher F. Prada is active.

Publication


Featured researches published by Christopher F. Prada.


Molecular and Biochemical Parasitology | 2012

Role of trypanosomatid's arginase in polyamine biosynthesis and pathogenesis.

Rafael Balaña-Fouce; Estefanía Calvo-Álvarez; Raquel Álvarez-Velilla; Christopher F. Prada; Yolanda Pérez-Pertejo; Rosa M. Reguera

L-Arginine is one of the precursor amino acids of polyamine biosynthesis in most living organisms including Leishmania parasites. L-Arginine is enzymatically hydrolyzed by arginase producing L-ornithine and urea. In Leishmania spp. and other trypanosomatids a single gene encoding arginase has been described. The product of this gene is compartmentalized in glycosomes and is the main source of L-ornithine for polyamine synthesis in these parasites. L-Ornithine is substrate of ornithine decarboxylase (ODC) - one of the key enzymes of polyamine biosynthesis and a validated target for therapeutic intervention - producing putrescine, which in turn is converted to spermidine by condensing with an aminopropyl group from decarboxylated S-adenosylmethionine. Unlike trypanosomatids, mammalian hosts have two arginases (arginase I and II), which have close structural and kinetic resemblances, but localize in different subcellular organelles, respond to different stimuli and have different immunological reactivity. Arginase I is a cytosolic enzyme, mostly expressed in the liver as a pivotal component of the urea cycle, providing in addition L-ornithine for polyamine synthesis. In contrast, arginase II localizes inside mitochondria and is metabolically involved in L-proline and L-glutamine biosynthesis. More striking is the role played by L-arginine as substrate for nitric oxide synthase (NOS2) in macrophages, the main route of clearance of many infectious agents including Leishmania and Trypanosoma cruzi. In infected macrophages L-arginine is catalysed by NOS2 or arginase, contributing to host defense or parasite killing, respectively. A balance between NOS2 and arginase activities is a crucial factor in the progression of the Leishmania infection inside macrophages. In response to T-helper type 2 (Th2) cytokines, resident macrophages induce arginase I inhibiting NO production from L-arginine, thereby promoting parasite proliferation. Conversely, the response to T-helper type 1 (Th1) cytokines is linked to NOS2 induction and parasite death. Moreover, induction of any of these enzymes is accompanied by suppression of the other. Specifically, arginase reduces NO synthesis by substrate depletion, and N(ω)-hydroxy-L-arginine, one of the intermediates of NOS2 catalysis, competitively inhibits arginase activity. In spite of abundant data concerning arginases in mammals as well their involvement in parasite killing, there are very few papers regarding the actual role of arginase in the parasite itself. This review is an update on the recent progress in research on leishmanial arginase including the role played by this enzyme in the establishment of infection in macrophages and the immune response of the host. A comparative study of arginases from other kinetoplatids is also discussed.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010

DNA topoisomerases in apicomplexan parasites: promising targets for drug discovery

Carlos García-Estrada; Christopher F. Prada; Celia Fernández-Rubio; Francisco Rojo-Vázquez; Rafael Balaña-Fouce

The phylum Apicomplexa includes a large group of protozoan parasites responsible for a wide range of animal and human diseases. Destructive pathogens, such as Plasmodium falciparum and Plasmodium vivax, causative agents of human malaria, Cryptosporidium parvum, responsible of childhood diarrhoea, and Toxoplasma gondii, responsible for miscarriages and abortions in humans, are frequently associated with HIV immunosuppression in AIDS patients. The lack of effective vaccines, along with years of increasing pressure to eradicate outbreaks with the use of drugs, has favoured the formation of multi-drug resistant strains in endemic areas. Almost all apicomplexan of medical interest contain two endosymbiotic organelles that contain their own mitochondrial and apicoplast DNA. Apicoplast is an attractive target for drug testing because in addition to harbouring singular metabolic pathways absent in the host, it also has its own transcription and translation machinery of bacterial origin. Accordingly, apicomplexan protozoa contain an interesting mixture of enzymes to unwind DNA from eukaryotic and prokaryotic origins. On the one hand, the main mechanism of DNA unwinding includes the scission of one—type I—or both DNA strands—type II eukaryotic topoisomerases, establishing transient covalent bonds with the scissile end. These enzymes are targeted by camptothecin and etoposide, respectively, two natural drugs whose semisynthetic derivatives are currently used in cancer chemotherapy. On the other hand, DNA gyrase is a bacterial-borne type II DNA topoisomerase that operates within the apicoplast and is effectively targeted by bacterial antibiotics like fluoroquinolones and aminocoumarins. The present review is an update on the new findings concerning topoisomerases in apicomplexan parasites and the role of these enzymes as targets for therapeutic agents.


Antimicrobial Agents and Chemotherapy | 2012

Indotecan (LMP400) and AM13-55: Two Novel Indenoisoquinolines Show Potential for Treating Visceral Leishmaniasis

Rafael Balaña-Fouce; Christopher F. Prada; Jose M. Requena; Mark Cushman; Yves Pommier; Raquel Álvarez-Velilla; José Miguel Escudero-Martínez; Estefanía Calvo-Álvarez; Yolanda Pérez-Pertejo; Rosa M. Reguera

ABSTRACT Visceral leishmaniasis is an emerging neglected tropical disease (NTD) caused by the protozoan Leishmania infantum in the countries bordering the Mediterranean Basin. Currently there is no effective vaccine against this disease, and the therapeutic approach is based on toxic derivatives of SbV. Therefore, the discovery of new therapeutic targets and the development of drugs designed to inhibit them comprise an extremely important approach to fighting this disease. DNA topoisomerases (Top) have been identified as promising targets for therapy against leishmaniasis. These enzymes are involved in solving topological problems generated during replication, transcription, and recombination of DNA. Being unlike that of the mammalian host, type IB DNA topoisomerase (TopIB) from Leishmania spp. is a unique bisubunit protein, which makes it very interesting as a selective drug target. In the present investigation, we studied the effect of two TopIB poisons with indenoisoquinoline structure, indotecan and AM13-55, on a murine BALB/c model of infected splenocytes with L. infantum, comparing their effectiveness with that of the clinically tested leishmanicidal drug paromomycin. Both compounds have high selectivity indexes compared with uninfected splenocytes. SDS-KCl-precipitable DNA-protein complexes in Leishmania promastigotes and in vitro cleaving assays confirmed that these drugs are Top poisons. The inhibitory potency of both indenoisoquinolines on L. infantum recombinant TopIB was assessed in vitro, with results showing that indotecan was the most active compound, preventing the relaxation of supercoiled DNA. Experimental infections in susceptible BALB/c mice treated with 2.5 mg/kg body weight/day once every other day for a total of 15 days showed that indotecan cleared more than 80% of the parasite burden of the spleen and liver, indicating promising activity against visceral leishmaniasis.


PLOS Neglected Tropical Diseases | 2012

Appraisal of a Leishmania major Strain Stably Expressing mCherry Fluorescent Protein for Both In Vitro and In Vivo Studies of Potential Drugs and Vaccine against Cutaneous Leishmaniasis

Estefanía Calvo-Álvarez; Néstor A. Guerrero; Raquel Álvarez-Velilla; Christopher F. Prada; Jose M. Requena; Carmen Punzón; Miguel Ángel Llamas; Francisco J. Arévalo; Luis Rivas; Manuel Fresno; Yolanda Pérez-Pertejo; Rafael Balaña-Fouce; Rosa M. Reguera

Background Leishmania major cutaneous leishmaniasis is an infectious zoonotic disease. It is produced by a digenetic parasite, which resides in the phagolysosomal compartment of different mammalian macrophage populations. There is an urgent need to develop new therapies (drugs) against this neglected disease that hits developing countries. The main goal of this work is to establish an easier and cheaper tool of choice for real-time monitoring of the establishment and progression of this pathology either in BALB/c mice or in vitro assays. To validate this new technique we vaccinated mice with an attenuated Δhsp70-II strain of Leishmania to assess protection against this disease. Methodology We engineered a transgenic L. major strain expressing the mCherry red-fluorescent protein for real-time monitoring of the parasitic load. This is achieved via measurement of fluorescence emission, allowing a weekly record of the footpads over eight weeks after the inoculation of BALB/c mice. Results In vitro results show a linear correlation between the number of parasites and fluorescence emission over a range of four logs. The minimum number of parasites (amastigote isolated from lesion) detected by their fluorescent phenotype was 10,000. The effect of antileishmanial drugs against mCherry+L. major infecting peritoneal macrophages were evaluated by direct assay of fluorescence emission, with IC50 values of 0.12, 0.56 and 9.20 µM for amphotericin B, miltefosine and paromomycin, respectively. An experimental vaccination trial based on the protection conferred by an attenuated Δhsp70-II mutant of Leishmania was used to validate the suitability of this technique in vivo. Conclusions A Leishmania major strain expressing mCherry red-fluorescent protein enables the monitoring of parasitic load via measurement of fluorescence emission. This approach allows a simpler, faster, non-invasive and cost-effective technique to assess the clinical progression of the infection after drug or vaccine therapy.


Biochemical Pharmacology | 2013

Gimatecan and other camptothecin derivatives poison Leishmania DNA-topoisomerase IB leading to a strong leishmanicidal effect

Christopher F. Prada; Raquel Álvarez-Velilla; Rafael Balaña-Fouce; Carlos Prieto; Estefanía Calvo-Álvarez; José Miguel Escudero-Martínez; Jose M. Requena; C. Ordóñez; Alessandro Desideri; Yolanda Pérez-Pertejo; Rosa M. Reguera

The aim of this work is the in vitro and ex vivo assessment of the leishmanicidal activity of camptothecin and three analogues used in cancer therapy: topotecan (Hycantim®), gimatecan (ST1481) and the pro-drug irinotecan (Camptosar®) as well as its active metabolite SN-38 against Leishmania infantum. The activity of camptothecin and its derivatives was studied on extracellular L. infantum infrared-emitting promastigotes and on an ex vivo murine model of infected splenocytes with L. infantum fluorescent amastigotes. In situ formation of SDS/KCl precipitable DNA-protein complexes in Leishmania promastigotes indicated that these drugs are DNA topoisomerase IB poisons. The inhibitory potency of camptothecin derivatives on recombinant L. infantum topoisomerase IB was assessed in vitro showing that gimatecan is the most active compound preventing the relaxation of supercoiled DNA at submicromolar concentrations. Cleavage equilibrium assays in Leishmania topoisomerase IB show that gimatecan changes the equilibrium towards cleavage at much lower concentrations than the other camptothecin derivatives and that this effect persists over time. Gimatecan and camptothecin were the most powerful compounds preventing cell growth of free-living L. infantum promastigotes within the same concentration range. All these compounds killed L. infantum splenocyte-infecting amastigotes within the nanomolar range. The amastigote form showed higher sensitivity to topoisomerase IB poisons (with high therapeutic selectivity indexes) than free-living promastigotes. All the compounds assayed poisoned L. infantum DNA topoisomerase IB leading to a strong leishmanicidal effect. Camptothecin derivatives are suitable for reducing the parasitic burden of ex vivo infected splenocytes. The selectivity index of gimatecan makes it a promising drug against this neglected disease.


Bioorganic & Medicinal Chemistry Letters | 2012

2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani.

Néstor M. Carballeira; Michelle M. Cartagena; David Sanabria; Deniz Tasdemir; Christopher F. Prada; Rosa M. Reguera; Rafael Balaña-Fouce

2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC(50)=5.3±0.7μM. The potency of LdTopIB inhibition follows the trend 2-ODA>2-HDA>2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC(50)=11.0μM), but it was less effective against other protozoa, Trypanosoma cruzi (IC(50)=48.1μM) and Trypanosoma brucei rhodesiense (IC(50)=64.5μM). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA>2-HDA>2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound.


Chemistry and Physics of Lipids | 2009

First total synthesis and antiprotozoal activity of (Z)-17-methyl-13-octadecenoic acid, a new marine fatty acid from the sponge Polymastia penicillus

Néstor M. Carballeira; Nashbly Montano; Rafael Balaña-Fouce; Christopher F. Prada

The first total synthesis for the (Z)-17-methyl-13-octadecenoic acid was accomplished in seven steps and in a 45% overall yield. The use of (trimethylsilyl)acetylene was key in the synthesis. Based on a previous developed strategy in our laboratory the best synthetic route towards the title compound was first acetylide coupling of (trimethylsilyl)acetylene to the long-chain protected 12-bromo-1-dodecanol followed by a second acetylide coupling to the short-chain 3-methyl-1-bromobutane, which resulted in higher yields. Complete spectral data is also presented for the first time for this recently discovered fatty acid. The title compound displayed antiprotozoal activity against Leishmania donovani (EC(50) = 19.8 microg/ml) and inhibited the leishmania DNA topoisomerase IB at concentrations of 50 microM.


Marine Drugs | 2013

Synthesis of Marine α-Methoxylated Fatty Acid Analogs that Effectively Inhibit the Topoisomerase IB from Leishmania donovani with a Mechanism Different from that of Camptothecin

Néstor M. Carballeira; Nashbly Montano; Raquel Álvarez-Velilla; Christopher F. Prada; Rosa M. Reguera; Rafael Balaña-Fouce

Sponges biosynthesize α-methoxylated fatty acids with unusual biophysical and biological properties and in some cases they display enhanced anticancer activities. However, the antiprotozoal properties of the α-methoxylated fatty acids have been less studied. In this work, we describe the total synthesis of (5Z,9Z)-(±)-2-methoxy-5,9-eicosadienoic acid (1) and its acetylenic analog (±)-2-methoxy-5,9-eicosadiynoic acid (2), and report that they inhibit (EC50 values between 31 and 22 µM) the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB). The inhibition of LdTopIB (EC50 = 53 µM) by the acid (±)-2-methoxy-6-icosynoic acid (12) was studied as well. The potency of LdTopIB inhibition followed the trend 2 > 1 > 12, indicating that the effectiveness of inhibition depends on the degree of unsaturation. All of the studied α-methoxylated fatty acids failed to inhibit the human topoisomerase IB enzyme (hTopIB) at 100 µM. However, the α-methoxylated fatty acids were capable of inhibiting an active but truncated LdTopIB with which camptothecin (CPT) cannot interact suggesting that the methoxylated fatty acids inhibit LdTopIB with a mechanism different from that of CPT. The diunsaturated fatty acids displayed low cytotoxicity towards Leishmania infantum promastigotes (EC50 values between 260 and 240 µM), but 12 displayed a better cytotoxicity towards Leishmania donovani promastigotes (EC50 = 100 µM) and a better therapeutic index.


Pure and Applied Chemistry | 2012

First total synthesis of the (±)-2-methoxy-6-heptadecynoic acid and related 2-methoxylated analogs as effective inhibitors of the leishmania topoisomerase IB enzyme

Néstor M. Carballeira; Michelle M. Cartagena; Fengyu Li; Zhongfang Chen; Christopher F. Prada; Estefanía Calvo-Álvarez; Rosa M. Reguera; Rafael Balaña-Fouce

The fatty acids (±)-2-methoxy-6Z-heptadecenoic acid, (±)-2-methoxy-6-hepta-decynoic acid, and (±)-2-methoxyheptadecanoic acid were synthesized and their inhibitory activity against the Leishmania DNA topoisomerase IB enzyme (LdTopIB) determined. Both 2-OMe-17:1 fatty acids were synthesized from 4-bromo-1-pentanol, the olefinic fatty acid in 10 steps and in 7 % overall yield, while the acetylenic fatty acid in 7 steps and in 14 % overall yield. The 2-OMe-17:0 acid was prepared in 6 steps and in 42 % yield from 1-hexa-decanol. The 2-OMe-17:1 acids inhibited LdTopIB, with the acetylenic acid displaying an EC50 = 16.6 ± 1.1 μM, but the 2-OMe-17:0 acid did not inhibit LdTopIB. The (±)-2-methoxy-6Z-heptadecenoic acid preferentially inhibited LdTopIB over the human TopIB enzyme. Unsaturation seems to be a prerequisite for effective inhibition, rationalized in terms of weak intermolecular interactions between the active site of LdTopIB and either the double or triple bonds of the fatty acids. Toxicity toward Leishmania donovani promastigotes was also investigated, resulting in the order acetylenic > olefinic > saturated with the (±)-2-methoxy-6-heptadecynoic acid displaying an EC50 = 74.0 ± 17.1 μM. Our results indicate that α-methoxylation decreases the toxicity of C17:1 fatty acids toward L. donovani promastigotes, but improves their selectivity index.


Chemistry and Physics of Lipids | 2011

First total synthesis and antileishmanial activity of (Z)-16-methyl-11-heptadecenoic acid, a new marine fatty acid from the sponge Dragmaxia undata.

Néstor M. Carballeira; Nashbly Montano; Gabriel A. Cintrón; Carmary Márquez; Celia Fernández Rubio; Christopher F. Prada; Rafael Balaña-Fouce

The first total synthesis for the (Z)-16-methyl-11-heptadecenoic acid, a novel fatty acid from the sponge Dragmaxia undata, was accomplished in seven steps and in a 44% overall yield. The use of (trimethylsilyl)acetylene was key in the synthesis. Based on a previous developed strategy in our laboratory the best synthetic route towards the title compound was first acetylide coupling of (trimethylsilyl)acetylene to the long-chain protected 10-bromo-1-decanol followed by a second acetylide coupling to the short-chain 1-bromo-4-methylpentane, which resulted in higher yields. Complete spectral data is also presented for the first time for this recently discovered fatty acid and the cis double bond stereochemistry of the natural acid was established. The title compound displayed antiprotozoal activity against Leishmania donovani (IC(50) = 165.5 ± 23.4 μM) and inhibited the leishmania DNA topoisomerase IB enzyme (LdTopIB) with an IC(50) = 62.3 ± 0.7 μM.

Collaboration


Dive into the Christopher F. Prada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose M. Requena

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nashbly Montano

University of Puerto Rico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge