Rosa M. Reguera
University of León
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosa M. Reguera.
General Pharmacology-the Vascular System | 1998
Rafael Balaña-Fouce; Rosa M. Reguera; J.C Cubrı́a; David Ordóñez
The development of new strategies on chemotherapy of parasitic protozoan diseases is one of the most exciting research fields of recent years. World Health Organization (WHO) reports have recognized that the physiology and biochemistry of protozoan parasites and the host-parasite relation are the main targets for the design of new drugs that can be used in the future against these diseases.
Molecular and Biochemical Parasitology | 2009
Rosa M. Reguera; Rafael Balaña-Fouce; Melissa Showalter; Suzanne M. Hickerson; Stephen M. Beverley
Polyamines are essential metabolites in eukaryotes participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. Whereas the polyamine biosynthesis arising from L-ornithine has been well studied in protozoa, the metabolic origin(s) of L-ornithine have received less attention. Arginase (EC 3.5.3.1) catalyzes the enzymatic hydrolysis of L-arginine to L-ornithine and urea, and we tested the role of arginase in polyamine synthesis by the generation of an arg(?) knockout in Leishmania major by double targeted gene replacement. This mutant lacked arginase activity and required the nutritional provision of polyamines or L-ornithine for growth. A complemented line (arg(?)/+ARG) expressing arginase from a multi-copy expression vector showed 30-fold elevation of arginase activity, similar polyamine and ornithine levels as the wild-type, and resistance to the inhibitors ?-difluoromethylornithine (DFMO) and N(?)-hydroxy-l-arginine (NOHA). This established that arginase is the major route of polyamine synthesis in promastigotes cultured in vitro. The arg(?) parasites retained the ability to differentiate normally to the infective metacyclic stage, and were able to induce progressive disease following inoculation into susceptible BALB/c mice, albeit less efficiently than WT parasites. These data suggest that the infective amastigote form of Leishmania, which normally resides within an acidified parasitophorous vacuole, can survive in vivo through salvage of host polyamines and/or other molecules, aided by the tendency of acidic compartments to concentrate basic metabolites. This may thus contribute to the relative resistance of Leishmania to ornithine decarboxylase (ODC) inhibitors. The availability of infective, viable, arginase-deficient parasites should prove useful in dissecting the role of l-arginine metabolism in both pro- and anti-parasitic responses involving host nitric oxide synthase, which requires L-arginine to generate NO.
Journal of Immunology | 2009
Helen M. Muleme; Rosa M. Reguera; Alicia Berard; Richard Azinwi; Ping Jia; Ifeoma Okwor; Stephen M. Beverley; Jude E. Uzonna
The balance between the products of l-arginine metabolism in macrophages regulates the outcome of Leishmania major infection. l-arginine can be oxidized by host inducible NO synthase to produce NO, which contributes to parasite killing. In contrast, l-arginine hydrolysis by host arginase blocks NO generation and provides polyamines, which can support parasite proliferation. Additionally, Leishmania encode their own arginase which has considerable potential to modulate infectivity and disease pathogenesis. In this study, we compared the infectivity and impact on host cellular immune response in vitro and in vivo of wild-type (WT) L. major with that of a parasite arginase null mutant (arg−) L. major. We found that arg− L. major are impaired in their macrophage infectivity in vitro independent of host inducible NO synthase activities. As with in vitro results, the proliferation of arg− L. major in animal infections was also significantly impaired in vivo, resulting in delayed onset of lesion development, attenuated pathology, and low parasite burden. Despite this attenuated pathology, the production of cytokines by cells from the draining lymph node of mice infected with WT and arg− L. major was similar at all times tested. Interestingly, in vitro and in vivo arginase levels were significantly lower in arg− than in WT-infected cases and were directly correlated with parasite numbers inside infected cells. These results suggest that Leishmania-encoded arginase enhances disease pathogenesis by augmenting host cellular arginase activities and that contrary to previous in vitro studies, the host cytokine response does not influence host arginase activity.
BMC Genomics | 2013
Alberto Rastrojo; Fernando Carrasco-Ramiro; Diana Martin; Antonio Jesús Crespillo; Rosa M. Reguera; Begoña Aguado; Jose M. Requena
BackgroundAlthough the genome sequence of the protozoan parasite Leishmania major was determined several years ago, the knowledge of its transcriptome was incomplete, both regarding the real number of genes and their primary structure.ResultsHere, we describe the first comprehensive transcriptome analysis of a parasite from the genus Leishmania. Using high-throughput RNA sequencing (RNA-seq), a total of 10285 transcripts were identified, of which 1884 were considered novel, as they did not match previously annotated genes. In addition, our data indicate that current annotations should be modified for many of the genes. The detailed analysis of the transcript processing sites revealed extensive heterogeneity in the spliced leader (SL) and polyadenylation addition sites. As a result, around 50% of the genes presented multiple transcripts differing in the length of the UTRs, sometimes in the order of hundreds of nucleotides. This transcript heterogeneity could provide an additional source for regulation as the different sizes of UTRs could modify RNA stability and/or influence the efficiency of RNA translation. In addition, for the first time for the Leishmania major promastigote stage, we are providing relative expression transcript levels.ConclusionsThis study provides a concise view of the global transcriptome of the L. major promastigote stage, providing the basis for future comparative analysis with other development stages or other Leishmania species.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2002
Antonio J. García-Fernández; A.E Bayoumi; Yolanda Pérez-Pertejo; M Motas; Rosa M. Reguera; C. Ordóñez; Rafael Balaña-Fouce; David Ordóñez
The effects of cadmium (Cd(2+)), mercury (Hg(2+)), lead (Pb(2+)), copper (Cu(2+)) and nickel (Ni(2+)) on the glutathione (GSH)-redox cycle were assessed in CHO-K1 by the neutral red uptake inhibition (NR) assay (NR(6.25), NR(12.5) and NR(25)). Mercury proved to be the most and lead the least toxic of the metals tested. The effects on GSH content and intracellular specific activities of enzymes involved in the GSH-redox balance were measured after a 24-h exposure. Total GSH content increased significantly in cultures exposed to the lowest metal concentration assayed (NR(6.25)), but fell to below control values when exposed to concentrations equivalent to NR(25). Oxidised glutathione content dropped significantly at NR(6.25), while somewhat higher values were obtained for cultures exposed to higher doses. Glutathione peroxidase (Gpx) activities were 1.2-, 1.5-, 1.6-, 2.0- and 2.5-fold higher than untreated controls for cadmium, copper, mercury, nickel and lead, respectively, at concentrations equivalent to NR(6.25). Gpx activity declined at metal concentrations equivalent to NR(12.5) and NR(25). Glutathione reductase activity remained almost unchanged except at low doses of mercury, nickel and lead. Glutathione-S-transferase activity decreased at rising metal concentrations. The results suggest that a homeostatic defence mechanism was activated when cells were exposed to doses equivalent to NR(6.25) while the ability of the cells to respond weakened as the dose increased. A close relationship was also observed between metal cytotoxicity, total GSH content and the dissociation energy of the sulphur-metal bonds. These facts confirm the involvement of antioxidant defence mechanisms in the toxic action of these ions.
Journal of Pharmacy and Pharmacology | 1998
J.C Cubrı́a; Rosa M. Reguera; Rafael Balaña-Fouce; C. Ordóñez; David Ordóñez
The use of β‐agonists as growth‐promoting agents in cattle could lead to toxic side‐effects in man. One such effect is the accumulation of polyamines which seem to be implicated in muscle and heart hypertrophy. We have studied the induction of cardiac hypertrophy after treatment with clenbuterol and the role of polyamines in this effect.
Molecular and Biochemical Parasitology | 2012
Rafael Balaña-Fouce; Estefanía Calvo-Álvarez; Raquel Álvarez-Velilla; Christopher F. Prada; Yolanda Pérez-Pertejo; Rosa M. Reguera
L-Arginine is one of the precursor amino acids of polyamine biosynthesis in most living organisms including Leishmania parasites. L-Arginine is enzymatically hydrolyzed by arginase producing L-ornithine and urea. In Leishmania spp. and other trypanosomatids a single gene encoding arginase has been described. The product of this gene is compartmentalized in glycosomes and is the main source of L-ornithine for polyamine synthesis in these parasites. L-Ornithine is substrate of ornithine decarboxylase (ODC) - one of the key enzymes of polyamine biosynthesis and a validated target for therapeutic intervention - producing putrescine, which in turn is converted to spermidine by condensing with an aminopropyl group from decarboxylated S-adenosylmethionine. Unlike trypanosomatids, mammalian hosts have two arginases (arginase I and II), which have close structural and kinetic resemblances, but localize in different subcellular organelles, respond to different stimuli and have different immunological reactivity. Arginase I is a cytosolic enzyme, mostly expressed in the liver as a pivotal component of the urea cycle, providing in addition L-ornithine for polyamine synthesis. In contrast, arginase II localizes inside mitochondria and is metabolically involved in L-proline and L-glutamine biosynthesis. More striking is the role played by L-arginine as substrate for nitric oxide synthase (NOS2) in macrophages, the main route of clearance of many infectious agents including Leishmania and Trypanosoma cruzi. In infected macrophages L-arginine is catalysed by NOS2 or arginase, contributing to host defense or parasite killing, respectively. A balance between NOS2 and arginase activities is a crucial factor in the progression of the Leishmania infection inside macrophages. In response to T-helper type 2 (Th2) cytokines, resident macrophages induce arginase I inhibiting NO production from L-arginine, thereby promoting parasite proliferation. Conversely, the response to T-helper type 1 (Th1) cytokines is linked to NOS2 induction and parasite death. Moreover, induction of any of these enzymes is accompanied by suppression of the other. Specifically, arginase reduces NO synthesis by substrate depletion, and N(ω)-hydroxy-L-arginine, one of the intermediates of NOS2 catalysis, competitively inhibits arginase activity. In spite of abundant data concerning arginases in mammals as well their involvement in parasite killing, there are very few papers regarding the actual role of arginase in the parasite itself. This review is an update on the recent progress in research on leishmanial arginase including the role played by this enzyme in the establishment of infection in macrophages and the immune response of the host. A comparative study of arginases from other kinetoplatids is also discussed.
PLOS Neglected Tropical Diseases | 2015
Estefanía Calvo-Álvarez; Konstantinos Stamatakis; Carmen Punzón; Raquel Álvarez-Velilla; Ana Tejería; José Miguel Escudero-Martínez; Yolanda Pérez-Pertejo; Manuel Fresno; Rafael Balaña-Fouce; Rosa M. Reguera
Background Visceral leishmaniasis (VL) is hypoendemic in the Mediterranean region, where it is caused by the protozoan Leishmania infantum. An effective vaccine for humans is not yet available and the severe side-effects of the drugs in clinical use, linked to the parenteral administration route of most of them, are significant concerns of the current leishmanicidal medicines. New drugs are desperately needed to treat VL and phenotype-based High Throughput Screenings (HTS) appear to be suitable to achieve this goal in the coming years. Methodology/Principal findings We generated two infrared fluorescent L. infantum strains, which stably overexpress the IFP 1.4 and iRFP reporter genes and performed comparative studies of their biophotonic properties at both promastigote and amastigote stages. To improve the fluorescence emission of the selected reporter in intracellular amastigotes, we engineered distinct constructs by introducing regulatory sequences of differentially-expressed genes (A2, AMASTIN and HSP70 II). The final strain that carries the iRFP gene under the control of the L. infantum HSP70 II downstream region (DSR), was employed to perform a phenotypic screening of a collection of small molecules by using ex vivo splenocytes from infrared-infected BALB/c mice. In order to further investigate the usefulness of this infrared strain, we monitored an in vivo infection by imaging BALB/c mice in a time-course study of 20 weeks. Conclusions/Significance The near-infrared fluorescent L. infantum strain represents an important step forward in bioimaging research of VL, providing a robust model of phenotypic screening suitable for HTS of small molecule collections in the mammalian parasite stage. Additionally, HSP70 II+L. infantum strain permitted for the first time to monitor an in vivo infection of VL. This finding accelerates the possibility of testing new drugs in preclinical in vivo studies, thus supporting the urgent and challenging drug discovery program against this parasitic disease.
Antimicrobial Agents and Chemotherapy | 2012
Rafael Balaña-Fouce; Christopher F. Prada; Jose M. Requena; Mark Cushman; Yves Pommier; Raquel Álvarez-Velilla; José Miguel Escudero-Martínez; Estefanía Calvo-Álvarez; Yolanda Pérez-Pertejo; Rosa M. Reguera
ABSTRACT Visceral leishmaniasis is an emerging neglected tropical disease (NTD) caused by the protozoan Leishmania infantum in the countries bordering the Mediterranean Basin. Currently there is no effective vaccine against this disease, and the therapeutic approach is based on toxic derivatives of SbV. Therefore, the discovery of new therapeutic targets and the development of drugs designed to inhibit them comprise an extremely important approach to fighting this disease. DNA topoisomerases (Top) have been identified as promising targets for therapy against leishmaniasis. These enzymes are involved in solving topological problems generated during replication, transcription, and recombination of DNA. Being unlike that of the mammalian host, type IB DNA topoisomerase (TopIB) from Leishmania spp. is a unique bisubunit protein, which makes it very interesting as a selective drug target. In the present investigation, we studied the effect of two TopIB poisons with indenoisoquinoline structure, indotecan and AM13-55, on a murine BALB/c model of infected splenocytes with L. infantum, comparing their effectiveness with that of the clinically tested leishmanicidal drug paromomycin. Both compounds have high selectivity indexes compared with uninfected splenocytes. SDS-KCl-precipitable DNA-protein complexes in Leishmania promastigotes and in vitro cleaving assays confirmed that these drugs are Top poisons. The inhibitory potency of both indenoisoquinolines on L. infantum recombinant TopIB was assessed in vitro, with results showing that indotecan was the most active compound, preventing the relaxation of supercoiled DNA. Experimental infections in susceptible BALB/c mice treated with 2.5 mg/kg body weight/day once every other day for a total of 15 days showed that indotecan cleared more than 80% of the parasite burden of the spleen and liver, indicating promising activity against visceral leishmaniasis.
Life Sciences | 1994
Rosa M. Reguera; R. Balaña Fouce; J.C Cubrı́a; M.L. Alvarez Bujidos; David Ordóñez
Fluorinated analogues of L-ornithine have been tested on growth and ornithine decarboxylase arising from L.infantum cytosolic extracts. EC50 values estimated from dose/response curves were 38 microM, 2.62 microM and 4.64 microM for alpha-DFMO, delta-MFMO and delta-MFMOme respectively. Also the inhibition produced by all three compounds was effectively reverted by exogenous putrescine, pointing towards the inhibition of L.infantum ODC. ODC from logarithmic phase cytosolic extracts was physicochemically and kinetically characterized, showing a long half-life (more than 24 h) and a km value for L-ornithine of 98 microM. Finally, the inhibitory effect of fluorinated analogues of L-ornithine was analysed on L.infantum ODC showing a time-dependent irreversible behavior, with Ki values estimated on 125 microM, T1/2 3.5 min for alpha-DFMO; 13.3 microM, T1/2 1.8 min for delta-MFMO and 4.3 microM, T1/2 4 min for delta-MFMOme.