Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher G. Nasveschuk is active.

Publication


Featured researches published by Christopher G. Nasveschuk.


Chemistry & Biology | 2013

Identification of EZH2 and EZH1 Small Molecule Inhibitors with Selective Impact on Diffuse Large B Cell Lymphoma Cell Growth

Shivani Garapaty-Rao; Christopher G. Nasveschuk; Alexandre Gagnon; Eric Y. Chan; Peter Sandy; Jennifer Busby; Srividya Balasubramanian; Robert E. Campbell; Feng Zhao; Louise Bergeron; James E. Audia; Brian K. Albrecht; Jean-Christophe Harmange; Richard D. Cummings; Patrick Trojer

The histone methyltransferase enhancer of Zeste homolog 2 (EZH2) is a candidate oncogene due to its prevalent overexpression in malignant diseases, including late stage prostate and breast cancers. The dependency of cancer cells on EZH2 activity is also predicated by recurrent missense mutations residing in the catalytic domain of EZH2 that have been identified in subtypes of diffuse large B cell lymphoma, follicular lymphoma and melanoma. Herein, we report the identification of a highly selective small molecule inhibitor series of EZH2 and EZH1. These compounds inhibit wild-type and mutant versions of EZH2 with nanomolar potency, suppress global histone H3-lysine 27 methylation, affect gene expression, and cause selective proliferation defects. These compounds represent a structurally distinct EZH2 inhibitor chemotype for the exploration of the role of Polycomb Repressive Complex 2-mediated H3K27 methylation in various biological contexts.


Chemistry & Biology | 2014

EZH2 inhibitor efficacy in non-Hodgkin's lymphoma does not require suppression of H3K27 monomethylation.

William D. Bradley; Shilpi Arora; Jennifer Busby; Srividya Balasubramanian; Victor S. Gehling; Christopher G. Nasveschuk; Rishi G. Vaswani; Chih-Chi Yuan; Charlie Hatton; Feng Zhao; Kaylyn E. Williamson; Priyadarshini Iyer; Jacqui Mendez; Robert E. Campbell; Nico Cantone; Shivani Garapaty-Rao; James E. Audia; Andrew Simon Cook; Les A. Dakin; Brian K. Albrecht; Jean-Christophe Harmange; Danette L. Daniels; Richard T. Cummings; Barbara M. Bryant; Emmanuel Normant; Patrick Trojer

The histone lysine methyltransferase (MT) Enhancer of Zeste Homolog 2 (EZH2) is considered an oncogenic driver in a subset of germinal center B-cell-like diffuse large B cell lymphoma (GCB-DLBCL) and follicular lymphoma due to the presence of recurrent, monoallelic mutations in the EZH2 catalytic domain. These genomic data suggest that targeting the EZH2 MT activity is a valid therapeutic strategy for the treatment of lymphoma patients with EZH2 mutations. Here we report the identification of highly potent and selective EZH2 small molecule inhibitors, their validation by a cellular thermal shift assay, application across a large cell panel representing various non-Hodgkins lymphoma (NHL) subtypes, and their efficacy in EZH2mutant-containing GCB-DLBCL xenograft models. Surprisingly, our EZH2 inhibitors selectively affect the turnover of trimethylated, but not monomethylated histone H3 lysine 27 at pharmacologically relevant doses. Importantly, we find that these inhibitors are broadly efficacious also in NHL models with wild-type EZH2.


ACS Medicinal Chemistry Letters | 2013

Discovery, Design, and Optimization of Isoxazole Azepine BET Inhibitors.

Victor S. Gehling; Michael C. Hewitt; Rishi G. Vaswani; Yves Leblanc; Alexandre Côté; Christopher G. Nasveschuk; Alexander M. Taylor; Jean-Christophe Harmange; James E. Audia; Eneida Pardo; Shivangi Joshi; Peter Sandy; Jennifer A. Mertz; Robert J. Sims; Louise Bergeron; Barbara M. Bryant; Steve Bellon; Florence Poy; Hariharan Jayaram; Ravichandran Sankaranarayanan; Sreegouri Yellapantula; Nandana Bangalore Srinivasamurthy; Swarnakumari Birudukota; Brian K. Albrecht

The identification of a novel series of small molecule BET inhibitors is described. Using crystallographic binding modes of an amino-isoxazole fragment and known BET inhibitors, a structure-based drug design effort lead to a novel isoxazole azepine scaffold. This scaffold showed good potency in biochemical and cellular assays and oral activity in an in vivo model of BET inhibition.


Organic Letters | 2008

A Concise Total Synthesis of Largazole, Solution Structure, and Some Preliminary Structure Activity Relationships

Christopher G. Nasveschuk; Dana Ungermannova; Xuedong Liu; Andrew J. Phillips

A total synthesis of largazole that proceeds in 8 steps from commercial materials is reported, along with some structure-activity relationships. A combination of NMR studies and molecular modeling have also provided a preliminary picture of the conformation of largazole.


Journal of Medicinal Chemistry | 2016

Identification of a Benzoisoxazoloazepine Inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) Family as a Candidate for Human Clinical Trials.

Brian K. Albrecht; Victor S. Gehling; Michael C. Hewitt; Rishi G. Vaswani; Alexandre Côté; Yves Leblanc; Christopher G. Nasveschuk; Steve Bellon; Louise Bergeron; Robert E. Campbell; Nico Cantone; Michael R. Cooper; Richard T. Cummings; Hariharan Jayaram; Shivangi Joshi; Jennifer A. Mertz; Adrianne Neiss; Emmanuel Normant; Michael O’Meara; Eneida Pardo; Florence Poy; Peter Sandy; Jeffrey G. Supko; Robert J. Sims; Jean-Christophe Harmange; Alexander M. Taylor; James E. Audia

In recent years, inhibition of the interaction between the bromodomain and extra-terminal domain (BET) family of chromatin adaptors and acetyl-lysine residues on chromatin has emerged as a promising approach to regulate the expression of important disease-relevant genes, including MYC, BCL-2, and NF-κB. Here we describe the identification and characterization of a potent and selective benzoisoxazoloazepine BET bromodomain inhibitor that attenuates BET-dependent gene expression in vivo, demonstrates antitumor efficacy in an MV-4-11 mouse xenograft model, and is currently undergoing human clinical trials for hematological malignancies (CPI-0610).


ACS Medicinal Chemistry Letters | 2014

Discovery and Optimization of Tetramethylpiperidinyl Benzamides as Inhibitors of EZH2

Christopher G. Nasveschuk; Alexandre Gagnon; Shivani Garapaty-Rao; Srividya Balasubramanian; Robert E. Campbell; Christina R. Lee; Feng Zhao; Louise Bergeron; Richard D. Cummings; Patrick Trojer; James E. Audia; Brian K. Albrecht; Jean-Christophe Harmange

The identification and development of a novel series of small molecule Enhancer of Zeste Homologue 2 (EZH2) inhibitors is described. A concise and modular synthesis enabled the rapid development of structure-activity relationships, which led to the identification of 44 as a potent, SAM-competitive inhibitor of EZH2 that dose-dependently decreased global H3K27me3 in KARPAS-422 lymphoma cells.


Journal of Medicinal Chemistry | 2016

Diving into the Water: Inducible Binding Conformations for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains.

Terry D. Crawford; Vickie Tsui; E. Megan Flynn; Shumei Wang; Alexander M. Taylor; Alexandre Côté; James E. Audia; Maureen Beresini; Daniel J. Burdick; Richard D. Cummings; Les A. Dakin; Martin Duplessis; Andrew C. Good; Michael C. Hewitt; Hon-Ren Huang; Hariharan Jayaram; James R. Kiefer; Ying Jiang; Jeremy Murray; Christopher G. Nasveschuk; Eneida Pardo; Florence Poy; F. Anthony Romero; Yong Tang; Jian Wang; Zhaowu Xu; Laura Zawadzke; Xiaoyu Zhu; Brian K. Albrecht; Steven Magnuson

The biological role played by non-BET bromodomains remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. A ligand-efficient nonselective bromodomain inhibitor was identified from a 6-methyl pyrrolopyridone fragment. Small hydrophobic substituents replacing the N-methyl group were designed directing toward the conserved bromodomain water pocket, and two distinct binding conformations were then observed. The substituents either directly displaced and rearranged the conserved solvent network, as in BRD4(1) and TAF1(2), or induced a narrow hydrophobic channel adjacent to the lipophilic shelf, as in BRD9 and CECR2. The preference of distinct substituents for individual bromodomains provided selectivity handles useful for future lead optimization efforts for selective BRD9, CECR2, and TAF1(2) inhibitors.


Journal of Medicinal Chemistry | 2016

Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a Potent and Selective Inhibitor of Histone Methyltransferase EZH2, Suitable for Phase I Clinical Trials for B-Cell Lymphomas.

Rishi G. Vaswani; Victor S. Gehling; Les A. Dakin; Andrew Simon Cook; Christopher G. Nasveschuk; Martin Duplessis; Priyadarshini Iyer; Srividya Balasubramanian; Feng Zhao; Andrew C. Good; Robert E. Campbell; Christina R. Lee; Nico Cantone; Richard T. Cummings; Emmanuel Normant; Steven Bellon; Brian K. Albrecht; Jean-Christophe Harmange; Patrick Trojer; James E. Audia; Ying Zhang; Neil Justin; Shuyang Chen; Jon R. Wilson; Steven J. Gamblin

Polycomb repressive complex 2 (PRC2) has been shown to play a major role in transcriptional silencing in part by installing methylation marks on lysine 27 of histone 3. Dysregulation of PRC2 function correlates with certain malignancies and poor prognosis. EZH2 is the catalytic engine of the PRC2 complex and thus represents a key candidate oncology target for pharmacological intervention. Here we report the optimization of our indole-based EZH2 inhibitor series that led to the identification of CPI-1205, a highly potent (biochemical IC50 = 0.002 μM, cellular EC50 = 0.032 μM) and selective inhibitor of EZH2. This compound demonstrates robust antitumor effects in a Karpas-422 xenograft model when dosed at 160 mg/kg BID and is currently in Phase I clinical trials. Additionally, we disclose the co-crystal structure of our inhibitor series bound to the human PRC2 complex.


PLOS ONE | 2012

Largazole and Its Derivatives Selectively Inhibit Ubiquitin Activating Enzyme (E1)

Dana Ungermannova; Seth J. Parker; Christopher G. Nasveschuk; Wei Wang; Bettina Quade; Gan Zhang; Robert D. Kuchta; Andrew J. Phillips; Xuedong Liu

Protein ubiquitination plays an important role in the regulation of almost every aspect of eukaryotic cellular function; therefore, its destabilization is often observed in most human diseases and cancers. Consequently, developing inhibitors of the ubiquitination system for the treatment of cancer has been a recent area of interest. Currently, only a few classes of compounds have been discovered to inhibit the ubiquitin-activating enzyme (E1) and only one class is relatively selective in E1 inhibition in cells. We now report that Largazole and its ester and ketone analogs selectively inhibit ubiquitin conjugation to p27Kip1 and TRF1 in vitro. The inhibitory activity of these small molecules on ubiquitin conjugation has been traced to their inhibition of the ubiquitin E1 enzyme. To further dissect the mechanism of E1 inhibition, we analyzed the effects of these inhibitors on each of the two steps of E1 activation. We show that Largazole and its derivatives specifically inhibit the adenylation step of the E1 reaction while having no effect on thioester bond formation between ubiquitin and E1. E1 inhibition appears to be specific to human E1 as Largazole ketone fails to inhibit the activation of Uba1p, a homolog of E1 in Schizosaccharomyces pombe. Moreover, Largazole analogs do not significantly inhibit SUMO E1. Thus, Largazole and select analogs are a novel class of ubiquitin E1 inhibitors and valuable tools for studying ubiquitination in vitro. This class of compounds could be further developed and potentially be a useful tool in cells.


ACS Medicinal Chemistry Letters | 2016

Fragment-Based Discovery of a Selective and Cell-Active Benzodiazepinone CBP/EP300 Bromodomain Inhibitor (CPI-637).

Alexander M. Taylor; Alexandre Côté; Michael C. Hewitt; Richard Pastor; Yves Leblanc; Christopher G. Nasveschuk; F. Anthony Romero; Terry D. Crawford; Nico Cantone; Hariharan Jayaram; Jeremy W. Setser; Jeremy D. Murray; Maureen Beresini; Gladys de Leon Boenig; Zhongguo Chen; Andrew R. Conery; Richard T. Cummings; Leslie A. Dakin; E. Megan Flynn; Oscar W. Huang; Susan Kaufman; Patricia J. Keller; James R. Kiefer; Tommy Lai; Yingjie Li; Jiangpeng Liao; Wenfeng Liu; Henry Lu; Eneida Pardo; Vickie Tsui

CBP and EP300 are highly homologous, bromodomain-containing transcription coactivators involved in numerous cellular pathways relevant to oncology. As part of our effort to explore the potential therapeutic implications of selectively targeting bromodomains, we set out to identify a CBP/EP300 bromodomain inhibitor that was potent both in vitro and in cellular target engagement assays and was selective over the other members of the bromodomain family. Reported here is a series of cell-potent and selective probes of the CBP/EP300 bromodomains, derived from the fragment screening hit 4-methyl-1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one.

Collaboration


Dive into the Christopher G. Nasveschuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael C. Hewitt

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge