Jean-Christophe Harmange
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Christophe Harmange.
Journal of Medicinal Chemistry | 2008
Brian K. Albrecht; Jean-Christophe Harmange; David Bauer; Loren Berry; Christiane Bode; Alessandro Boezio; April Chen; Deborah Choquette; Isabelle Dussault; Cary Fridrich; Satoko Hirai; Doug Hoffman; Jay Larrow; Paula Kaplan-Lefko; Jasmine Lin; Julia Lohman; Alexander M. Long; Jodi Moriguchi; Anne O'connor; Michele Potashman; Monica Reese; Karen Rex; Aaron C. Siegmund; Kavita Shah; Roman Shimanovich; Stephanie K. Springer; Yohannes Teffera; Yajing Yang; Yihong Zhang; Steven Bellon
Tumorigenesis is a multistep process in which oncogenes play a key role in tumor formation, growth, and maintenance. MET was discovered as an oncogene that is activated by its ligand, hepatocyte growth factor. Deregulated signaling in the c-Met pathway has been observed in multiple tumor types. Herein we report the discovery of potent and selective triazolopyridazine small molecules that inhibit c-Met activity.
Chemistry & Biology | 2013
Shivani Garapaty-Rao; Christopher G. Nasveschuk; Alexandre Gagnon; Eric Y. Chan; Peter Sandy; Jennifer Busby; Srividya Balasubramanian; Robert E. Campbell; Feng Zhao; Louise Bergeron; James E. Audia; Brian K. Albrecht; Jean-Christophe Harmange; Richard D. Cummings; Patrick Trojer
The histone methyltransferase enhancer of Zeste homolog 2 (EZH2) is a candidate oncogene due to its prevalent overexpression in malignant diseases, including late stage prostate and breast cancers. The dependency of cancer cells on EZH2 activity is also predicated by recurrent missense mutations residing in the catalytic domain of EZH2 that have been identified in subtypes of diffuse large B cell lymphoma, follicular lymphoma and melanoma. Herein, we report the identification of a highly selective small molecule inhibitor series of EZH2 and EZH1. These compounds inhibit wild-type and mutant versions of EZH2 with nanomolar potency, suppress global histone H3-lysine 27 methylation, affect gene expression, and cause selective proliferation defects. These compounds represent a structurally distinct EZH2 inhibitor chemotype for the exploration of the role of Polycomb Repressive Complex 2-mediated H3K27 methylation in various biological contexts.
Chemistry & Biology | 2014
William D. Bradley; Shilpi Arora; Jennifer Busby; Srividya Balasubramanian; Victor S. Gehling; Christopher G. Nasveschuk; Rishi G. Vaswani; Chih-Chi Yuan; Charlie Hatton; Feng Zhao; Kaylyn E. Williamson; Priyadarshini Iyer; Jacqui Mendez; Robert E. Campbell; Nico Cantone; Shivani Garapaty-Rao; James E. Audia; Andrew Simon Cook; Les A. Dakin; Brian K. Albrecht; Jean-Christophe Harmange; Danette L. Daniels; Richard T. Cummings; Barbara M. Bryant; Emmanuel Normant; Patrick Trojer
The histone lysine methyltransferase (MT) Enhancer of Zeste Homolog 2 (EZH2) is considered an oncogenic driver in a subset of germinal center B-cell-like diffuse large B cell lymphoma (GCB-DLBCL) and follicular lymphoma due to the presence of recurrent, monoallelic mutations in the EZH2 catalytic domain. These genomic data suggest that targeting the EZH2 MT activity is a valid therapeutic strategy for the treatment of lymphoma patients with EZH2 mutations. Here we report the identification of highly potent and selective EZH2 small molecule inhibitors, their validation by a cellular thermal shift assay, application across a large cell panel representing various non-Hodgkins lymphoma (NHL) subtypes, and their efficacy in EZH2mutant-containing GCB-DLBCL xenograft models. Surprisingly, our EZH2 inhibitors selectively affect the turnover of trimethylated, but not monomethylated histone H3 lysine 27 at pharmacologically relevant doses. Importantly, we find that these inhibitors are broadly efficacious also in NHL models with wild-type EZH2.
Journal of Medicinal Chemistry | 2008
Longbin Liu; Aaron C. Siegmund; Ning Xi; Paula Kaplan-Lefko; Karen Rex; April Chen; Jasmine Lin; Jodi Moriguchi; Loren Berry; Liyue Huang; Yohannes Teffera; Yajing Yang; Yihong Zhang; Steven Bellon; Matthew R. Lee; Roman Shimanovich; Annette Bak; Celia Dominguez; Mark H. Norman; Jean-Christophe Harmange; Isabelle Dussault; Tae-Seong Kim
Deregulation of the receptor tyrosine kinase c-Met has been implicated in human cancers. Pyrazolones with N-1 bearing a pendent hydroxyalkyl side chain showed selective inhibition of c-Met over VEGFR2. However, studies revealed the generation of active, nonselective metabolites. Blocking this metabolic hot spot led to the discovery of 17 (AMG 458). When dosed orally, 17 significantly inhibited tumor growth in the NIH3T3/TPR-Met and U-87 MG xenograft models with no adverse effect on body weight.
ACS Medicinal Chemistry Letters | 2013
Victor S. Gehling; Michael C. Hewitt; Rishi G. Vaswani; Yves Leblanc; Alexandre Côté; Christopher G. Nasveschuk; Alexander M. Taylor; Jean-Christophe Harmange; James E. Audia; Eneida Pardo; Shivangi Joshi; Peter Sandy; Jennifer A. Mertz; Robert J. Sims; Louise Bergeron; Barbara M. Bryant; Steve Bellon; Florence Poy; Hariharan Jayaram; Ravichandran Sankaranarayanan; Sreegouri Yellapantula; Nandana Bangalore Srinivasamurthy; Swarnakumari Birudukota; Brian K. Albrecht
The identification of a novel series of small molecule BET inhibitors is described. Using crystallographic binding modes of an amino-isoxazole fragment and known BET inhibitors, a structure-based drug design effort lead to a novel isoxazole azepine scaffold. This scaffold showed good potency in biochemical and cellular assays and oral activity in an in vivo model of BET inhibition.
Nature Chemical Biology | 2016
Maia Vinogradova; Victor S. Gehling; Amy Gustafson; Shilpi Arora; Charles Tindell; Catherine Wilson; Kaylyn E. Williamson; Gulfem D. Guler; Pranoti Gangurde; Wanda Manieri; Jennifer Busby; E. Megan Flynn; Fei Lan; Hyo-Jin Kim; Shobu Odate; Andrea G. Cochran; Yichin Liu; Matthew Wongchenko; Yibin Yang; Tommy K. Cheung; Tobias M. Maile; Ted Lau; Michael Costa; Ganapati V. Hegde; Erica Jackson; Robert M. Pitti; David Arnott; Christopher M. Bailey; Steve Bellon; Richard T. Cummings
The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.
Journal of Medicinal Chemistry | 2016
Brian K. Albrecht; Victor S. Gehling; Michael C. Hewitt; Rishi G. Vaswani; Alexandre Côté; Yves Leblanc; Christopher G. Nasveschuk; Steve Bellon; Louise Bergeron; Robert E. Campbell; Nico Cantone; Michael R. Cooper; Richard T. Cummings; Hariharan Jayaram; Shivangi Joshi; Jennifer A. Mertz; Adrianne Neiss; Emmanuel Normant; Michael O’Meara; Eneida Pardo; Florence Poy; Peter Sandy; Jeffrey G. Supko; Robert J. Sims; Jean-Christophe Harmange; Alexander M. Taylor; James E. Audia
In recent years, inhibition of the interaction between the bromodomain and extra-terminal domain (BET) family of chromatin adaptors and acetyl-lysine residues on chromatin has emerged as a promising approach to regulate the expression of important disease-relevant genes, including MYC, BCL-2, and NF-κB. Here we describe the identification and characterization of a potent and selective benzoisoxazoloazepine BET bromodomain inhibitor that attenuates BET-dependent gene expression in vivo, demonstrates antitumor efficacy in an MV-4-11 mouse xenograft model, and is currently undergoing human clinical trials for hematological malignancies (CPI-0610).
Journal of Medicinal Chemistry | 2008
Jean-Christophe Harmange; Matthew Weiss; Julie Germain; Anthony Polverino; George Borg; James Bready; Danlin Chen; Deborah Choquette; Angela Coxon; Tom DeMelfi; Lucian DiPietro; Nicholas Doerr; Juan Estrada; Julie Flynn; Russell Graceffa; Shawn P. Harriman; Stephen Kaufman; Daniel S. La; Alexander M. Long; Matthew W. Martin; Sesha Neervannan; Vinod F. Patel; Michele Potashman; Kelly Regal; Phillip M. Roveto; Michael Schrag; Charlie Starnes; Andrew Tasker; Yohannes Teffera; Ling Wang
A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles. In particular, compound 48 demonstrated significant antitumor efficacy against established HT29 human colon adenocarcinoma xenografts implanted in athymic mice. A full account of the preparation, structure-activity relationships, pharmacokinetic properties, and pharmacology of analogues within this series is presented.
Pain | 2010
BaoXi Gao; Markus Hierl; Kristie Clarkin; Todd Juan; Hung Nguyen; Marissa van der Valk; Hong Deng; Wenhong Guo; Sonya G. Lehto; David J. Matson; Jeff S. McDermott; Johannes Knop; Kevin Gaida; Lei Cao; Dan Waldon; Brian K. Albrecht; Alessandro Boezio; Katrina W. Copeland; Jean-Christophe Harmange; Stephanie K. Springer; Annika B. Malmberg
&NA; Nicotinic acetylcholine receptors (nAChRs) are longstanding targets for a next generation of pain therapeutics, but the nAChR subtypes that govern analgesia remain unknown. We tested a series of nicotinic agonists, including many molecules used or tried clinically, on a panel of cloned neuronal nAChRs for potency and selectivity using patch‐clamp electrophysiology and a live cell‐based fluorescence assay. Nonselective nicotinic agonists as well as compounds selective either for &agr;4&bgr;2 or for &agr;7 nAChRs were then tested in the formalin and complete Freunds adjuvant models of pain. Nonselective nAChR agonists ABT‐594 and varenicline were effective analgesics. By contrast, the selective &agr;4&bgr;2 agonist ispronicline and a novel &agr;4&bgr;2‐selective potentiator did not appear to produce analgesia in either model. &agr;7‐selective agonists reduced the pain‐related endpoint, but the effect could be ascribed to nonspecific reduction of movement rather than to analgesia. Neither selective nor nonselective &agr;7 nicotinic agonists affected the release of pro‐inflammatory cytokines in response to antigen challenge. Electrophysiological recordings from spinal cord slice showed a strong nicotine‐induced increase in inhibitory synaptic transmission that was mediated partially by &agr;4&bgr;2 and only minimally by &agr;7 subtypes. Taken with previous studies, the results suggest that agonism of &agr;4&bgr;2 nAChRs is necessary but not sufficient to produce analgesia, and that the spinal cord is a key site where the molecular action of nAChRs produces analgesia.
Journal of Medicinal Chemistry | 2012
Longbin Liu; Mark H. Norman; Matthew R. Lee; Ning Xi; Aaron C. Siegmund; Alessandro Boezio; Shon Booker; Debbie Choquette; Noel D. D’Angelo; Julie Germain; Kevin Yang; Yajing Yang; Yihong Zhang; Steven Bellon; Douglas A. Whittington; Jean-Christophe Harmange; Celia Dominguez; Tae-Seong Kim; Isabelle Dussault
As part of our effort toward developing an effective therapeutic agent for c-Met-dependent tumors, a pyrazolone-based class II c-Met inhibitor, N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3-fluorophenyl)-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (1), was identified. Knowledge of the binding mode of this molecule in both c-Met and VEGFR-2 proteins led to a novel strategy for designing more selective analogues of 1. Along with detailed SAR information, we demonstrate that the low kinase selectivity associated with class II c-Met inhibitors can be improved significantly. This work resulted in the discovery of potent c-Met inhibitors with improved selectivity profiles over VEGFR-2 and IGF-1R that could serve as useful tools to probe the relationship between kinase selectivity and in vivo efficacy in tumor xenograft models. Compound 59e (AMG 458) was ultimately advanced into preclinical safety studies.