Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher G. Soares is active.

Publication


Featured researches published by Christopher G. Soares.


Medical Physics | 1998

Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55

Azam Niroomand-Rad; Charles Robert Blackwell; Bert M. Coursey; Kenneth P. Gall; James M. Galvin; W.L. McLaughlin; Ali S. Meigooni; Ravinder Nath; James E. Rodgers; Christopher G. Soares

Recommendations of the American Association of Physicists in Medicine (AAPM) for the radiochromic film dosimetry are presented. These guidelines were prepared by a task group of the AAPM Radiation Therapy Committee and have been reviewed and approved by the AAPM Science Council.


Medical Physics | 2005

Precise radiochromic film dosimetry using a flat-bed document scanner

Slobodan Devic; J Seuntjens; E Sham; Ervin B. Podgorsak; C. Ross Schmidtlein; Assen S. Kirov; Christopher G. Soares

In this study, a measurement protocol is presented that improves the precision of dose measurements using a flat-bed document scanner in conjunction with two new GafChromic® film models, HS and Prototype A EBT exposed to 6MV photon beams. We established two sources of uncertainties in dose measurements, governed by measurement and calibration curve fit parameters contributions. We have quantitatively assessed the influence of different steps in the protocol on the overall dose measurement uncertainty. Applying the protocol described in this paper on the Agfa Arcus II flat-bed document scanner, the overall one-sigma dose measurement uncertainty for an uniform field amounts to 2% or less for doses above around 0.4Gy in the case of the EBT (Prototype A), and for doses above 5Gy in the case of the HS model GafChromic® film using a region of interest 2×2mm2 in size.


Medical Physics | 1999

Intravascular brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 60

Ravinder Nath; Howard I. Amols; C Coffey; Dennis M. Duggan; Shirish Jani; Michael C. Schell; Christopher G. Soares; James S. Whiting; Patricia E. Cole; Ian Crocker; Robert S. Schwartz

Recent preclinical and clinical studies indicate that irradiation using ionizing radiation in the dose range of 15 to 30 Gy may reduce the occurrence of restenosis in patients who have undergone an angioplasty. Several delivery systems of intravascular brachytherapy have been developed to deliver radiation doses in this range with minimal normal tissue toxicity. In late 1995 the American Association of Physicists in Medicine (AAPM) formed a task group to investigate these issues and to report the current state of the art of intravascular brachytherapy physics. The report of this task group is presented here.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1991

Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams

W.L. McLaughlin; Chen Yun-Dong; Christopher G. Soares; A. Miller; G. Van Dyk; D.F. Lewis

Abstract A new radiation-sensitive imaging material, called GafChromic™ Dosimetry Media, offers advances in high-dose radiation dosimetry and high-resolution radiography for gamma radiation and electrons. The potential uses in radiation processing, radiation sterilization of medical devices, population control of insects by irradiation, food irradiation, blood irradiation for organ-transplant immuno-suppression, clinical radiography, and industrial radiography have led to the present sensitometric study over the breadth of the wide dynamic range of this new routine detector and imaging material, namely, absorbed doses from 10 Gy to 5 × 104 Gy. The thin-coated film is colorless before irradiation, and registers a deep-blue image upon irradiation, with two absorption bands at about 650 nm (major band) and 600 nm (minor band). The response to electrons, in terms of increase in absorbance per unit absorbed dose, is the same as that to gamma radiation within the estimated uncertainty of the measurements (± 5%, 95% confidence level). The spatial resolving power is > 1200 lines/mm. After the first 24 hours, the image is stable over many months (within ± 5% in absorbance), however, the system should be irradiated and analyzed at approximately the temperatures used during calibration, because of temperature dependence during irradiation and readout, and temperatures greater than 55°C should be avoided.


Medical Physics | 2004

Dosimetric properties of improved GafChromic films for seven different digitizers

Slobodan Devic; J Seuntjens; Gyorgy Hegyi; Ervin B. Podgorsak; Christopher G. Soares; Assen S. Kirov; Imad Ali; Jeffrey F. Williamson; Angel Elizondo

Two recently introduced GafChromic film models, HS and XR-T, have been developed as more sensitive and uniform alternatives to GafChromic MD-55-2 film. The HS model has been specifically designed for measurement of absorbed dose in high-energy photon beams (above 1 MeV), while the XR-T model has been introduced for dose measurements of low energy (0.1 MeV) photons. The goal of this study is to compare the sensitometric curves and estimated dosimetric uncertainties associated with seven different GafChromic film dosimetry systems for the two new film models. The densitometers tested are: LKB Pharmacia UltroScan XL, Molecular Dynamics Personal Densitometer, Nuclear Associates Radiochromic Densitometer Model 37-443, Photoelectron Corporation CMR-604, Laser Pro 16, Vidar VXR-16, and AGFA Arcus II document scanner. Pieces of film were exposed to different doses in a dose range from 0.5 to 50 Gy using 6 MV photon beam. Functional forms for dose vs net optical density have been determined for each of the GafChromic film-dosimetry systems used in this comparison. Two sources of uncertainties in dose measurements, governed by the experimental measurement and calibration curve fit procedure, have been compared for the densitometers used. Among the densitometers tested, it is found that for the HS film type the uncertainty caused by the experimental measurement varies from 1% to 3% while the calibration fit uncertainty ranges from 2% to 4% for doses above 5 Gy. Corresponding uncertainties for XR-T film model are somewhat higher and range from 1% to 5% for experimental and from 2% to 7% for the fit uncertainty estimates. Notwithstanding the significant variations in sensitivity, the studied densitometers exhibit very similar precision for GafChromic film based dose measurements above 5 Gy.


Medical Physics | 2006

Accurate skin dose measurements using radiochromic film in clinical applications

Slobodan Devic; J Seuntjens; Wamied Abdel-Rahman; Michael D.C. Evans; Marina Olivares; Ervin B. Podgorsak; Té Vuong; Christopher G. Soares

Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.


Medical Physics | 1998

Calibration and characterization of beta‐particle sources for intravascular brachytherapy

Christopher G. Soares; D Halpern; C-K Chris Wang

The calibration of a catheter-based system to be used for therapeutic radiation treatment to prevent restenosis following interventional coronary procedures is described. The primary dosimetry was performed ionometrically using an extrapolation chamber equipped with a 1-mm diameter collecting electrode to measure absorbed dose in tissue equivalent plastic at a depth of 2 mm. These results are compared with measurements with radiochromic dye film, which is also used to characterize sources for axial and trans-axial uniformity, and to determine dose distributions at various depths. A protocol for dose calculation based on that of AAPM TG43 is suggested for these sources, and examples of its use are given for the calculation of the enhancement effect on dose rate from a single seed source due to neighboring seeds. Monte Carlo calculations were also performed to validate the measured results.


Medical Physics | 1994

The use of a radiochromic detector for the determination of stereotactic radiosurgery dose characteristicsa)

W.L. McLaughlin; Christopher G. Soares; J. A. Sayeg; Edwin C. McCullough; Robert W. Kline; Andrew Wu; Ann Maitz

The measurement of absorbed dose as well as dose distributions (profiles and isodose curves) for small radiation fields (as encountered in stereotactic surgery) has been difficult due to the usual large detector size or densitometer aperture (> 1 mm) relative to the radiation field (as small as 4 mm). The radiochromic direct-imaging film, when read with a scanning laser microdensitometer (laser beam diameter 0.1 mm), overcomes this difficulty and has advantages over conventional film in providing improved precision, better tissue equivalence, greater dynamic range, higher spatial resolution, and room light handling. As a demonstration of suitability, the calibrated radiochromic film has been used to measure the dose characteristics for the 18-, 14-, 8-, and 4-mm fields from the gamma-ray stereotactic surgery units at Mayo Clinic and the University of Pittsburgh. Intercomparisons of radiochromic film with conventional methods of dosimetry and vendor-supplied computational dose planning system values indicate agreement to within +/- 2%. The dose, dose profiles, and isodose curves obtained with radiochromic film can provide high-spatial-resolution information of value for acceptance testing and quality control of dose measurement and/or calculation.


Radiation Measurements | 2004

Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C

E.G. Yukihara; R. Gaza; S.W.S. McKeever; Christopher G. Soares

The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained using four different HCPs beams (150 MeV/u 4He, 400 MeV/u 12C, 490 MeV/u 28Si, and 500 MeV/u 56Fe). The efficiencies were determined as a function of the HCP linear energy transfer (LET). It was observed that the efficiency depends on the type of detector, measurement technique, and the choice of signal. Additionally, it is shown that the shape of the CW-OSL decay curve from Al2O3:C depends on the type of radiation, and, in principle, this can be used to extract information concerning the LET of an unknown radiation field. The response of the dosimeters to low-LET radiation was also investigated for doses in the range from about 1-1000 Gy. These data were used to explain the different efficiency values obtained for the different materials and techniques, as well as the LET dependence of the CW-OSL decay curve shape.


Medical Physics | 2009

Optimizing the dynamic range extension of a radiochromic film dosimetry system

Slobodan Devic; Nada Tomic; Christopher G. Soares; Ervin B. Podgorsak

The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

Collaboration


Dive into the Christopher G. Soares's collaboration.

Top Co-Authors

Avatar

Ronaldo Minniti

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Mitch

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

W.L. McLaughlin

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Seltzer

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Ervin B. Podgorsak

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Bert M. Coursey

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Margarete Ehrlich

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Assen S. Kirov

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge