Christopher H. Woelk
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher H. Woelk.
Bioinformatics | 2006
Sergei L. Kosakovsky Pond; David Posada; Mike B. Gravenor; Christopher H. Woelk; Simon D. W. Frost
MOTIVATION Phylogenetic and evolutionary inference can be severely misled if recombination is not accounted for, hence screening for it should be an essential component of nearly every comparative study. The evolution of recombinant sequences can not be properly explained by a single phylogenetic tree, but several phylogenies may be used to correctly model the evolution of non-recombinant fragments. RESULTS We developed a likelihood-based model selection procedure that uses a genetic algorithm to search multiple sequence alignments for evidence of recombination breakpoints and identify putative recombinant sequences. GARD is an extensible and intuitive method that can be run efficiently in parallel. Extensive simulation studies show that the method nearly always outperforms other available tools, both in terms of power and accuracy and that the use of GARD to screen sequences for recombination ensures good statistical properties for methods aimed at detecting positive selection. AVAILABILITY Freely available http://www.datamonkey.org/GARD/
PLOS ONE | 2013
Matthew C. Strain; Steven M. Lada; Tiffany Luong; Steffney Rought; Sara Gianella; Valeri H. Terry; Celsa A. Spina; Christopher H. Woelk; Douglas D. Richman
Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it.
PLOS Pathogens | 2013
Celsa A. Spina; Jenny L. Anderson; Nancie M. Archin; Alberto Bosque; Jonathan Chan; Marylinda Famiglietti; Warner C. Greene; Angela D. M. Kashuba; Sharon R. Lewin; David M. Margolis; Matthew J. Mau; Debbie S. Ruelas; Suha Saleh; Kotaro Shirakawa; Robert F. Siliciano; Akul Singhania; Paula C. Soto; Valeri H. Terry; Eric Verdin; Christopher H. Woelk; Stacey L Wooden; Sifei Xing; Vicente Planelles
The possibility of HIV-1 eradication has been limited by the existence of latently infected cellular reservoirs. Studies to examine control of HIV latency and potential reactivation have been hindered by the small numbers of latently infected cells found in vivo. Major conceptual leaps have been facilitated by the use of latently infected T cell lines and primary cells. However, notable differences exist among cell model systems. Furthermore, screening efforts in specific cell models have identified drug candidates for “anti-latency” therapy, which often fail to reactivate HIV uniformly across different models. Therefore, the activity of a given drug candidate, demonstrated in a particular cellular model, cannot reliably predict its activity in other cell model systems or in infected patient cells, tested ex vivo. This situation represents a critical knowledge gap that adversely affects our ability to identify promising treatment compounds and hinders the advancement of drug testing into relevant animal models and clinical trials. To begin to understand the biological characteristics that are inherent to each HIV-1 latency model, we compared the response properties of five primary T cell models, four J-Lat cell models and those obtained with a viral outgrowth assay using patient-derived infected cells. A panel of thirteen stimuli that are known to reactivate HIV by defined mechanisms of action was selected and tested in parallel in all models. Our results indicate that no single in vitro cell model alone is able to capture accurately the ex vivo response characteristics of latently infected T cells from patients. Most cell models demonstrated that sensitivity to HIV reactivation was skewed toward or against specific drug classes. Protein kinase C agonists and PHA reactivated latent HIV uniformly across models, although drugs in most other classes did not.
Pharmaceutical Research | 2000
Luis A. Dellamary; Thomas E. Tarara; Dan Smith; Christopher H. Woelk; Anastasios Adractas; Michael L. Costello; Howard Gill; Jeffry G. Weers
AbstractPurpose. To assess the physical stability and aerosol characteristicsof suspensions of hollow porous microspheres (PulmoSpheres™) inHFA-134a. Methods. Cromolyn sodium, albuterol sulfate, and formoterol fumaratemicrospheres were prepared by a spray-drying method. Particle sizeand morphology were determined via electron microscopy. Particleaggregation and suspension creaming times were assessed visually,and aerosol performance was determined via Andersen cascadeimpaction and dose uniformity studies. Results. The hollow porous particle morphology allows the propellantto permeate freely within the particles creating a novel form ofsuspension termed a homodispersion™, wherein the dispersed and continuousphases are identical, separated by an insoluble interfacial layer of drugand excipient. Homodispersion formation improves suspension stabilityby minimizing the difference in density between the particles andthe medium, and by reducing attractive forces between particles. Theimproved physical stability leads to excellent dose uniformity. Excellentaerosolization efficiencies are also observed with PulmoSpheresformulations, with fine particle fractions of about 70%. Conclusions. The formation of hollow porous particles provides anew formulation technology for stabilizing suspensions of drugs inhydrofluoroalkane propellants with improved physical stability, contentuniformity, and aerosolization efficiency.
Journal of General Virology | 2002
S.Susanna Twiddy; Christopher H. Woelk; Edward C. Holmes
A maximum-likelihood approach was used to analyse selection pressures acting on genes from all four serotypes of dengue virus (DEN). A number of amino acid positions were identified within the envelope (E) glycoprotein that have been subject to relatively weak positive selection in both DEN-3 and DEN-4, as well as in two of the five genotypes of DEN-2. No positive selection was detected in DEN-1. In accordance with the function of the E protein as the major antigenic determinant of DEN, the majority of these sites were located in, or near to, potential T- or B-cell epitopes. A smaller number of selected sites was located in other well-defined functional domains of the E protein, suggesting that cell tropism and virus-mediated membrane fusion may also confer fitness advantages to DEN in nature. Several positively selected amino acid substitutions were also identified in the NS2B and NS5 genes of DEN-2, although the cause of this selection is unclear, whereas the capsid, membrane and non-structural genes NS1, NS2A, NS3 and NS4 were all subject to strong functional constraints. Hence, evidence was found for localized adaptive evolution in natural isolates of DEN, revealing that selection pressures differ among serotypes, genotypes and viral proteins.
Journal of Virology | 2004
Marc Choisy; Christopher H. Woelk; Jean François Guégan; David Robertson
ABSTRACT Molecular adaptation, as characterized by the detection of positive selection, was quantified in a number of genes from different human immunodeficiency virus type 1 (HIV-1) group M subtypes, group O, and an HIV-2 subtype using the codon-based maximum-likelihood method of Yang and coworkers (Z. H. Yang, R. Nielsen, N. Goldman, and A. M. K. Pedersen, Genetics 155:431-449, 2000). The env gene was investigated further since it exhibited the strongest signal for positive selection compared to those of the other two major HIV genes (gag and pol). In order to investigate the pattern of adaptive evolution across env, the location and strength of positive selection in different HIV-1 sequence alignments was compared. The number of sites having a significant probability of being positively selected varied among these different alignment data sets, ranging from 25 in HIV-1 group M subtype A to 40 in HIV-1 group O. Strikingly, there was a significant tendency for positively selected sites to be located at the same position in different HIV-1 alignments, ranging from 10 to 16 shared sites for the group M intersubtype comparisons and from 6 to 8 for the group O to M comparisons, suggesting that all HIV-1 variants are subject to similar selective forces. As the host immune response is believed to be the dominant driving force of adaptive evolution in HIV, this result would suggest that the same sites are contributing to viral persistence in diverse HIV infections. Thus, the positions of the positively selected sites were investigated in reference to the inferred locations of different epitope types (antibody, T helper, and cytotoxic T lymphocytes) and the positions of N and O glycosylation sites. We found a significant tendency for positively selected sites to fall outside T-helper epitopes and for positively selected sites to be strongly associated with N glycosylation sites.
Journal of Virology | 2002
Aaron C. Brault; Ann M. Powers; Edward C. Holmes; Christopher H. Woelk; Scott C. Weaver
ABSTRACT Epidemic-epizootic Venezuelan equine encephalitis (VEE) viruses (VEEV) have emerged repeatedly via convergent evolution from enzootic predecessors. However, previous sequence analyses have failed to identify common sets of nucleotide or amino acid substitutions associated with all emaergence events. During 1993 and 1996, VEEV subtype IE epizootics occurred on the Pacific Coast of the states of Chiapas and Oaxaca in southern Mexico. Like other epizootic VEEV strains, when inoculated into guinea pigs and mice, the Mexican isolates were no more virulent than closely related enzootic strains, complicating genetic studies of VEE emergence. Complete genomic sequences of 4 of the Mexican strains were determined and compared to those of closely related enzootic subtype IE isolates from Guatemala. The epizootic viruses were less than 2% different at the nucleotide sequence level, and phylogenetic relationships confirmed that the equine-virulent Mexican strains probably evolved from enzootic progenitors on the Pacific Coast of Mexico or Guatemala. Of 35 amino acids that varied among the Guatemalan and Mexican isolates, only 8 were predicted phylogenetically to have accompanied the phenotypic change. One mutation at position 117 of the E2 envelope glycoprotein, involving replacement of Glu by Lys, resulted in a small-plaque phenotype characteristic of epizootic VEEV strains. Analysis of additional E2 sequences from representative enzootic and epizootic VEEV isolates implicated similar surface charge changes in the emergence of previous South American epizootic phenotypes, indicating that E2 mutations are probably important determinants of the equine-virulent phenotype and of VEE emergence. Maximum-likelihood analysis indicated that one change at E2 position 213 has been influenced by positive selection and convergent evolution of the epizootic phenotype.
Journal of Molecular Evolution | 2001
Christopher H. Woelk; Edward C. Holmes
Abstract. A maximum-likelihood analysis of selection pressures acting on the attachment (G) glycoprotein gene of respiratory syncytial virus (RSV) from humans (HRSV) and bovines (BRSV) is presented. Six positively selected sites were identified in both group A and group B of HRSV, although only one site was common between them, while no positively selected sites were detected in BRSV. All positively selected sites were located within the ectodomain of the G protein and showed some association with positions of immunoglobulin (Ig) epitopes and sites of O-glycosylation. These results suggest that immune (antibody)-driven natural selection is an important determinant of RSV evolution and that this selection pressure differs among strains. The passage histories of RSV strains were also shown to affect the distribution of positively selected sites, particularly in HRSV B, and should be considered whenever retrospective analysis of adaptive evolution is undertaken.
AIDS | 2009
Davey M. Smith; Susanne J. May; Samantha Tweeten; Lydia N. Drumright; Mary E. Pacold; Sergei L. Kosakovsky Pond; Rick Pesano; Yolanda Lie; Douglas D. Richman; Simon D. W. Frost; Christopher H. Woelk; Susan J. Little
Background:Current public health efforts often use molecular technologies to identify and contain communicable disease networks, but not for HIV. Here, we investigate how molecular epidemiology can be used to identify highly related HIV networks within a population and how voluntary contact tracing of sexual partners can be used to selectively target these networks. Methods:We evaluated the use of HIV-1 pol sequences obtained from participants of a community-recruited cohort (n = 268) and a primary infection research cohort (n = 369) to define highly related transmission clusters and the use of contact tracing to link other individuals (n = 36) within these clusters. The presence of transmitted drug resistance was interpreted from the pol sequences (Calibrated Population Resistance v3.0). Results:Phylogenetic clustering was conservatively defined when the genetic distance between any two pol sequences was less than 1%, which identified 34 distinct transmission clusters within the combined community-recruited and primary infection research cohorts containing 160 individuals. Although sequences from the epidemiologically linked partners represented approximately 5% of the total sequences, they clustered with 60% of the sequences that clustered from the combined cohorts (odds ratio 21.7; P ≤ 0.01). Major resistance to at least one class of antiretroviral medication was found in 19% of clustering sequences. Conclusion:Phylogenetic methods can be used to identify individuals who are within highly related transmission groups, and contact tracing of epidemiologically linked partners of recently infected individuals can be used to link into previously defined transmission groups. These methods could be used to implement selectively targeted prevention interventions.
Molecular Psychiatry | 2015
Michael S. Breen; Adam X. Maihofer; Stephen J. Glatt; Daniel S. Tylee; Sharon D. Chandler; Ming T. Tsuang; Victoria B. Risbrough; Dewleen G. Baker; Daniel T. O'Connor; Caroline M. Nievergelt; Christopher H. Woelk
The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.