Christopher J. Barnes
Wild Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher J. Barnes.
The ISME Journal | 2017
Lindsay K. Newbold; Sarah Burthe; Anna Oliver; Hyun S. Gweon; Christopher J. Barnes; Francis Daunt; Christopher J. van der Gast
Infection by gastrointestinal helminths of humans, livestock and wild animals is common, but the impact of such endoparasites on wild hosts and their gut microbiota represents an important overlooked component of population dynamics. Wild host gut microbiota and endoparasites occupy the same physical niche spaces with both affecting host nutrition and health. However, associations between the two are poorly understood. Here we used the commonly parasitized European shag (Phalacrocorax aristotelis) as a model wild host. Forty live adults from the same colony were sampled. Endoscopy was employed to quantify helminth infection in situ. Microbiota from the significantly distinct proventriculus (site of infection), cloacal and faecal gastrointestinal tract microbiomes were characterised using 16S rRNA gene-targeted high-throughput sequencing. We found increasingly strong associations between helminth infection and microbiota composition progressing away from the site of infection, observing a pronounced dysbiosis in microbiota when samples were partitioned into high- and low-burden groups. We posit this dysbiosis is predominately explained by helminths inducing an anti-inflammatory environment in the proventriculus, diverting host immune responses away from themselves. This study, within live wild animals, provides a vital foundation to better understand the mechanisms that underpin the three-way relationship between helminths, microbiota and hosts.
Frontiers in Microbiology | 2016
Christopher J. Barnes; Christopher J. van der Gast; Caitlin A. Burns; Niall P. McNamara; Gary D. Bending
Root-associated fungi are key contributors to ecosystem functioning, however, the factors which determine community assembly are still relatively poorly understood. This study simultaneously quantified the roles of geographical distance, environmental heterogeneity and time in determining root-associated fungal community composition at the local scale within a short rotation coppice (SRC) willow plantation. Culture independent molecular analyses of the root-associated fungal community suggested a strong but temporally variable effect of geographical distance among fungal communities in terms of composition at the local geographical level. Whilst these distance effects were most prevalent on October communities, soil pH had an effect on structuring of the communities throughout the sampling period. Given the temporal variation in the effects of geographical distance and the environment for shaping root-associated fungal communities, there is clearly need for a temporal component to sampling strategies in future investigations of fungal ecology.
Frontiers in Microbiology | 2016
Christopher J. Barnes; Carla Maldonado; Tobias Guldberg Frøslev; Alexandre Antonelli; Nina Rønsted
Bolivia is one of the most biologically diverse countries on the planet. Between the Andes and the Amazon drainage basin spans the Yungas, a vast forested region shown to be extremely species rich in macro-organisms. However, it remains unclear whether this high diversity is also reflected in microbial diversity. Here we assess the genetic, taxonomic and functional diversity of root-associated fungi surrounding Cinchona calisaya trees, a typical element of the intermediate altitudes of the Bolivian Yungas. We determine the relative effects of edaphic properties, climate, and geography in regulating fungal community assembly. We show that α-diversity for these fungal communities was similar to temperate and arid ecosystems, averaging 90.1 operational taxonomic units (OTUs) per sample, with reads predominantly assigned to the Ascomycota phylum and with a saprotrophic lifestyle. ß-diversity was calculated as the distance-decay rate, and in contrast to α-diversity, was exceptionally high with a rate of −0.407. Soil properties (pH and P) principally regulated fungal community assembly in an analogous manner to temperate environments, with pH and phosphorus explaining 7.8 and 7.2% of community variation respectively. Surprisingly, altitude does not influence community formation, and there is limited evidence that climate (precipitation and temperature) play a role. Our results suggest that sampling should be performed over a wide geographical and environmental range in order to capture the full root-associated fungal diversity in subtropical regions. This study sheds further light on the diversity and distribution of the worlds “hidden biodiversity.”
New Phytologist | 2018
Christopher J. Barnes; Christopher J. van der Gast; Niall P. McNamara; Gary D. Bending
Summary Global warming is resulting in increased frequency of weather extremes. Root‐associated fungi play important roles in terrestrial biogeochemical cycling processes, but the way in which they are affected by extreme weather is unclear. Here, we performed long‐term field monitoring of the root‐associated fungus community of a short rotation coppice willow plantation, and compared community dynamics before and after a once in 100 yr rainfall event that occurred in the UK in 2012. Monitoring of the root‐associated fungi was performed over a 3‐yr period by metabarcoding the fungal internal transcribed spacer (ITS) region. Repeated soil testing and continuous climatic monitoring supplemented community data, and the relative effects of environmental and temporal variation were determined on the root‐associated fungal community. Soil saturation and surface water were recorded throughout the early growing season of 2012, following extreme rainfall. This was associated with a crash in the richness and relative abundance of ectomycorrhizal fungi, with each declining by over 50%. Richness and relative abundance of saprophytes and pathogens increased. We conclude that extreme rainfall events may be important yet overlooked determinants of root‐associated fungal community assembly. Given the integral role of ectomycorrhizal fungi in biogeochemical cycles, these events may have considerable impacts upon the functioning of terrestrial ecosystems.
Frontiers in Microbiology | 2016
Christopher J. Barnes; Caitlin A. Burns; Christopher J. van der Gast; Niall P. McNamara; Gary D. Bending
Arbuscular mycorrhizal fungi (AMF) are a group of obligate plant symbionts which can promote plant nutrition. AMF communities are diverse, but the factors which control their assembly in space and time remain unclear. In this study, the contributions of geographical distance, environmental heterogeneity and time in shaping AMF communities associated with Miscanthus giganteus (a perennial grass originating from south-east Asia) were determined over a 13 months period. In particular, the community was partitioned into core (abundant and persistent taxa) and satellite (taxa with low abundance and persistence) constituents and the drivers of community assembly for each determined. β-diversity was exceptionally low across the 140 m line transects, and there was limited evidence of geographical scaling effects on the composition of the core, satellite or combined communities. However, AMF richness and community composition changed over time associated with fluctuation within both the core and satellite communities. The degree to which AMF community variation was explained by soil properties was consistently higher in the core community than the combined and satellite communities, suggesting that the satellite community had considerable stochasticity associated with it. We suggest that the partitioning of communities into their core and satellite constituents could be employed to enhance the variation explained within microbial community analyses.
Frontiers in Plant Science | 2017
Carla Maldonado; Christopher J. Barnes; Claus Cornett; Else Holmfred; Steen H. Hansen; Claes Persson; Alexandre Antonelli; Nina Rønsted
Considerable inter- and intraspecific variation with respect to the quantity and composition of plant natural products exists. The processes that drive this variation remain largely unknown. Understanding which factors determine chemical diversity has the potential to shed light on plant defenses against herbivores and diseases and accelerate drug discovery. For centuries, Cinchona alkaloids were the primary treatment of malaria. Using Cinchona calisaya as a model, we generated genetic profiles of leaf samples from four plastid (trnL-F, matK, rps16, and ndhF) and one nuclear (ITS) DNA regions from twenty-two C. calisaya stands sampled in the Yungas region of Bolivia. Climatic and soil parameters were characterized and bark samples were analyzed for content of the four major alkaloids using HPLC-UV to explore the utility of evolutionary history (phylogeny) in determining variation within species of these compounds under natural conditions. A significant phylogenetic signal was found for the content of two out of four major Cinchona alkaloids (quinine and cinchonidine) and their total content. Climatic parameters, primarily driven by changing altitude, predicted 20.2% of the overall alkaloid variation, and geographical separation accounted for a further 9.7%. A clade of high alkaloid producing trees was identified that spanned a narrow range of altitudes, from 1,100 to 1,350 m. However, climate expressed by altitude was not a significant driver when accounting for phylogeny, suggesting that the chemical diversity is primarily driven by phylogeny. Comparisons of the relative effects of both environmental and genetic variability in determining plant chemical diversity have scarcely been performed at the genotypic level. In this study we demonstrate there is an essential need to do so if the extensive genotypic variation in plant biochemistry is to be fully understood.
Microorganisms | 2018
Emilie Andersen-Ranberg; Christopher J. Barnes; Linett Rasmussen; Alejandro Salgado-Flores; Carsten Grøndahl; Jesper B. Mosbacher; Anders J. Hansen; Monica A. Sundset; Niels Martin Schmidt; Christian Sonne
Muskoxen (Ovibos moschatus) are ruminants adapted to a high-fibre diet. There is increasing interest in the role that gut microbes play in the digestion and utilization of these specialized diets but only limited data available on the gut microbiome of high-Arctic animals. In this study, we metabarcoded the 16S rRNA region of faecal samples from muskoxen of Northeast Greenland, Northwest Greenland and Norway, and quantified the effects of physiological and temporal factors on bacterial composition. We found significant effects of body mass, year of sampling and location on the gut bacterial communities of North East Greenland muskoxen. These effects were however dwarfed by the effects of location, emphasizing the importance of the local ecology on the gut bacterial community. Habitat alterations and rising temperatures may therefore have a considerable impact on muskoxen health and reproductive success. Moreover, muskoxen are hunted and consumed in Greenland, Canada and Alaska; therefore, this study also screened for potential zoonoses of food safety interest. A total of 13 potentially zoonotic genera were identified, including the genera Erysipelothrix and Yersinia implicated in recent mass die-offs of the muskoxen themselves.
Ecography | 2018
Camila D. Ritter; Alexander Zizka; Christopher J. Barnes; R. Henrik Nilsson; Fabian Roger; Alexandre Antonelli
Amazonia is an environmentally heterogeneous and biologically megadiverse region, and its biodiversity varies considerably over space. However, existing knowledge on Amazonian biodiversity and its environmental determinants stems almost exclusively from studies of macroscopic above-ground organisms, notably vertebrates and trees. In contrast, diversity patterns of most other organisms remain elusive, although some of them, for instance microorganisms, constitute the overwhelming majority of taxa in any given location, both in terms of diversity and abundance. Here, we use DNA metabarcoding to estimate prokaryote and eukaryote diversity in environmental soil and litter samples from 39 survey plots in a longitudinal transect across Brazilian Amazonia using 16S and 18S gene sequences, respectively. We characterize richness and community composition based on operational taxonomic units (OTUs) and test their correlation with longitude and habitat. We find that prokaryote and eukaryote OTU richness and community composition differ significantly among localities and habitats, and that prokaryotes are more strongly structured by locality and habitat type than eukaryotes. Our results 1) provide a first large-scale mapping of Amazonian soil biodiversity, suggesting that OTU richness patterns might follow substantially different patterns from those observed for macro-organisms; and 2) indicate that locality and habitat factors interact in determining OTU richness patterns and community composition. This study shows the potential of DNA metabarcoding in unveiling Amazonias outstanding diversity, despite the lack of complete reference sequence databases for the organisms sequenced. Ecography (Less)
PeerJ | 2018
Camila D. Ritter; Alexander Zizka; Fabian Roger; Hanna Tuomisto; Christopher J. Barnes; R. Henrik Nilsson; Alexandre Antonelli
Background Knowledge on the globally outstanding Amazonian biodiversity and its environmental determinants stems almost exclusively from aboveground organisms, notably plants. In contrast, the environmental factors and habitat preferences that drive diversity patterns for micro-organisms in the ground remain elusive, despite the fact that micro-organisms constitute the overwhelming majority of life forms in any given location, in terms of both diversity and abundance. Here we address how the diversity and community turnover of operational taxonomic units (OTU) of organisms in soil and litter respond to soil physicochemical properties; whether OTU diversities and community composition in soil and litter are correlated with each other; and whether they respond in a similar way to soil properties. Methods We used recently inferred OTUs from high-throughput metabarcoding of the 16S (prokaryotes) and 18S (eukaryotes) genes to estimate OTU diversity (OTU richness and effective number of OTUs) and community composition for prokaryotes and eukaryotes in soil and litter across four localities in Brazilian Amazonia. All analyses were run separately for prokaryote and eukaryote OTUs, and for each group using both presence-absence and abundance data. Combining these with novel data on soil chemical and physical properties, we identify abiotic correlates of soil and litter organism diversity and community structure using regression, ordination, and variance partitioning analysis. Results Soil organic carbon content was the strongest factor explaining OTU diversity (negative correlation) and pH was the strongest factor explaining community turnover for prokaryotes and eukaryotes in both soil and litter. We found significant effects also for other soil variables, including both chemical and physical properties. The correlation between OTU diversity in litter and in soil was non-significant for eukaryotes and weak for prokaryotes. The community compositions of both prokaryotes and eukaryotes were more separated among habitat types (terra-firme, várzea, igapó and campina) than between substrates (soil and litter). Discussion In spite of the limited sampling (four localities, 39 plots), our results provide a broad-scale view of the physical and chemical correlations of soil and litter biodiversity in a longitudinal transect across the world’s largest rainforest. Our methods help to understand links between soil properties, OTU diversity patterns, and community composition and turnover. The lack of strong correlation between OTU diversity in litter and in soil suggests independence of diversity drives of these substrates and highlights the importance of including both measures in biodiversity assessments. Massive sequencing of soil and litter samples holds the potential to complement traditional biological inventories in advancing our understanding of the factors affecting tropical diversity.
Ecology and Evolution | 2018
Natalie Iwanycki Ahlstrand; Nicoline Havskov Reghev; Bo Markussen; Hans Christian Bruun Hansen; Finnur F. Eiriksson; Margret Thorsteinsdottir; Nina Rønsted; Christopher J. Barnes
Abstract Plants produce a multitude of metabolites that contribute to their fitness and survival and play a role in local adaptation to environmental conditions. The effects of environmental variation are particularly well studied within the genus Plantago; however, previous studies have largely focused on targeting specific metabolites. Studies exploring metabolome‐wide changes are lacking, and the effects of natural environmental variation and herbivory on the metabolomes of plants growing in situ remain unknown. An untargeted metabolomic approach using ultra‐high‐performance liquid chromatography–mass spectrometry, coupled with variation partitioning, general linear mixed modeling, and network analysis was used to detect differences in metabolic phenotypes of Plantago major in fifteen natural populations across Denmark. Geographic region, distance, habitat type, phenological stage, soil parameters, light levels, and leaf area were investigated for their relative contributions to explaining differences in foliar metabolomes. Herbivory effects were further investigated by comparing metabolomes from damaged and undamaged leaves from each plant. Geographic region explained the greatest number of significant metabolic differences. Soil pH had the second largest effect, followed by habitat and leaf area, while phenological stage had no effect. No evidence of the induction of metabolic features was found between leaves damaged by herbivores compared to undamaged leaves on the same plant. Differences in metabolic phenotypes explained by geographic factors are attributed to genotypic variation and/or unmeasured environmental factors that differ at the regional level in Denmark. A small number of specialized features in the metabolome may be involved in facilitating the success of a widespread species such as Plantago major into such wide range of environmental conditions, although overall resilience in the metabolome was found in response to environmental parameters tested. Untargeted metabolomic approaches have great potential to improve our understanding of how specialized plant metabolites respond to environmental change and assist in adaptation to local conditions.