Christopher J. Stein
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher J. Stein.
Journal of Chemical Theory and Computation | 2016
Christopher J. Stein; Markus Reiher
One of the key challenges of quantum-chemical multi-configuration methods is the necessity to manually select orbitals for the active space. This selection requires both expertise and experience and can therefore impose severe limitations on the applicability of this most general class of ab initio methods. A poor choice of the active orbital space may yield even qualitatively wrong results. This is obviously a severe problem, especially for wave function methods that are designed to be systematically improvable. Here, we show how the iterative nature of the density matrix renormalization group combined with its capability to include up to about 100 orbitals in the active space can be exploited for a systematic assessment and selection of active orbitals. These benefits allow us to implement an automated approach for active orbital space selection, which can turn multi-configuration models into black box approaches.
Angewandte Chemie | 2017
Peter Becker; Thomas Duhamel; Christopher J. Stein; Markus Reiher; Kilian Muñiz
Abstract An unprecedented method that makes use of the cooperative interplay between molecular iodine and photoredox catalysis has been developed for dual light‐activated intramolecular benzylic C−H amination. Iodine serves as the catalyst for the formation of a new C−N bond by activating a remote Csp3 −H bond (1,5‐HAT process) under visible‐light irradiation while the organic photoredox catalyst TPT effects the reoxidation of the molecular iodine catalyst. To explain the compatibility of the two involved photochemical steps, the key N−I bond activation was elucidated by computational methods. The new cooperative catalysis has important implications for the combination of non‐metallic main‐group catalysis with photocatalysis.
Chimia | 2016
Stefan Knecht; Erik Donovan Hedegård; Sebastian Keller; Arseny Kovyrshin; Yingjin Ma; Andrea Muolo; Christopher J. Stein; Markus Reiher
Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our new computational toolbox which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.
Journal of Chemical Theory and Computation | 2016
Christopher J. Stein; Vera von Burg; Markus Reiher
Multi-configurational approaches yield universal wave function parametrizations that can qualitatively well describe electronic structures along reaction pathways. For quantitative results, multi-reference perturbation theory is required to capture dynamic electron correlation from the otherwise neglected virtual orbitals. Still, the overall accuracy suffers from the finite size and choice of the active orbital space and peculiarities of the perturbation theory. Fortunately, the electronic wave functions at equilibrium structures of reactants and products can often be well described by single-reference methods and hence are accessible to accurate coupled cluster calculations. Here, we calculate the heterolytic double dissociation energy of four 3d-metallocenes with the complete active space self-consistent field method and compare to highly accurate coupled cluster data. Our coupled cluster data are well within the experimental error bars. This accuracy can also be approached by complete active space calculations with an orbital selection based on information entropy measures. The entropy based active space selection is discussed in detail. We find a very subtle balance between static and dynamic electron correlation effects that emphasizes the need for algorithmic active space selection and that differs significantly from restricted active space results for identical active spaces reported in the literature.
Chimia | 2017
Christopher J. Stein; Markus Reiher
Quantum-chemical multi-configurational methods are required for a proper description of static electron correlation, a phenomenon inherent to the electronic structure of molecules with multiple (near-)degenerate frontier orbitals. Here, we review how a property of these frontier orbitals, namely the entanglement entropy is related to static electron correlation. A subset of orbitals, the so-called active orbital space is an essential ingredient for all multi-configurational methods. We proposed an automated selection of this active orbital space, that would otherwise be a tedious and error prone manual procedure, based on entanglement measures. Here, we extend this scheme to demonstrate its capability for the selection of consistent active spaces for several excited states and along reaction coordinates.
Molecular Physics | 2017
Christopher J. Stein; Markus Reiher
ABSTRACT One of the most critical tasks at the very beginning of a quantum chemical investigation is the choice of either a multi- or single-configurational method. Naturally, many proposals exist to define a suitable diagnostic of the multi-configurational character for various types of wave functions in order to assist this crucial decision. Here, we present a new orbital-entanglement-based multi-configurational diagnostic termed Zs(1). The correspondence of orbital entanglement and static (or non-dynamic) electron correlation permits the definition of such a diagnostic. We chose our diagnostic to meet important requirements such as well-defined limits for pure single-configurational and multi-configurational wave functions. The Zs(1) diagnostic can be evaluated from a partially converged, but qualitatively correct, and therefore inexpensive density matrix renormalisation group wave function as in our recently presented automated active orbital selection protocol. Its robustness and the fact that it can be evaluated at low cost make this diagnostic a practical tool for routine applications.
Photochemistry and Photobiology | 2017
Denis G. Artiukhin; Christopher J. Stein; Markus Reiher; Johannes Neugebauer
The spin densities of radical cations of magnesium porphyrin, magnesium chlorine and a truncated chlorophyll a model are calculated with density‐functional theory and multiconfigurational quantum chemical methods. The latter serve as a reference for approximate density‐functional theory which yields spin densities that may suffer from the self‐interaction error. We carried out complete active space self‐consistent field calculations with increasing active orbital spaces to systematically converge qualitatively correct spin densities. In particular, for the magnesium chlorine and chlorophyll a model radical cations, this is not easy to achieve because of the lower symmetry compared to magnesium porphyrin. Strategies had to be employed which allowed us to consider very large active orbital spaces. We explored restricted active space self‐consistent field and density‐matrix renormalization group calculations. Based on these reference data, we assessed the accuracy of different density‐functional approximations. We show that in particular, exchange–correlation model potentials with correct asymptotic behavior yield good spin densities, and we find, in agreement with previous studies on different classes of compounds, that hybrid functionals systematically increase spin‐polarization effects with increasing amounts of exact exchange. Our results provide a starting point for investigations of spin densities of more complex systems such as the hinge model for the primary electron donor in photosystem II.
Journal of Chemical Theory and Computation | 2017
Alberto Baiardi; Christopher J. Stein; Vincenzo Barone; Markus Reiher
Variational approaches for the calculation of vibrational wave functions and energies are a natural route to obtain highly accurate results with controllable errors. Here, we demonstrate how the density matrix renormalization group (DMRG) can be exploited to optimize vibrational wave functions (vDMRG) expressed as matrix product states. We study the convergence of these calculations with respect to the size of the local basis of each mode, the number of renormalized block states, and the number of DMRG sweeps required. We demonstrate the high accuracy achieved by vDMRG for small molecules that were intensively studied in the literature. We then proceed to show that the complete fingerprint region of the sarcosyn-glycin dipeptide can be calculated with vDMRG.
Angewandte Chemie | 2017
Peter Becker; Thomas Duhamel; Christopher J. Stein; Markus Reiher; Kilian Muñiz
Journal of the American Chemical Society | 2017
Shashi Bhushan Sinha; Dimitar Y. Shopov; Liam S. Sharninghausen; Christopher J. Stein; Brandon Q. Mercado; David Balcells; Thomas Bondo Pedersen; Markus Reiher; Gary W. Brudvig; Robert H. Crabtree