Markus Reiher
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Markus Reiher.
Journal of Computational Chemistry | 2010
Francesco Aquilante; Luca De Vico; Nicolas Ferré; Giovanni Ghigo; Per-Åke Malmqvist; Pavel Neogrády; Thomas Bondo Pedersen; Michal Pitonak; Markus Reiher; Björn O. Roos; Luis Serrano-Andrés; Miroslav Urban; Valera Veryazov; Roland Lindh
Some of the new unique features of the MOLCAS quantum chemistry package version 7 are presented in this report. In particular, the Cholesky decomposition method applied to some quantum chemical methods is described. This approach is used both in the context of a straight forward approximation of the two‐electron integrals and in the generation of so‐called auxiliary basis sets. The article describes how the method is implemented for most known wave functions models: self‐consistent field, density functional theory, 2nd order perturbation theory, complete‐active space self‐consistent field multiconfigurational reference 2nd order perturbation theory, and coupled‐cluster methods. The report further elaborates on the implementation of a restricted‐active space self‐consistent field reference function in conjunction with 2nd order perturbation theory. The average atomic natural orbital basis for relativistic calculations, covering the whole periodic table, are described and associated unique properties are demonstrated. Furthermore, the use of the arbitrary order Douglas‐Kroll‐Hess transformation for one‐component relativistic calculations and its implementation are discussed. This section especially focuses on the implementation of the so‐called picture‐change‐free atomic orbital property integrals. Moreover, the ElectroStatic Potential Fitted scheme, a version of a quantum mechanics/molecular mechanics hybrid method implemented in MOLCAS, is described and discussed. Finally, the report discusses the use of the MOLCAS package for advanced studies of photo chemical phenomena and the usefulness of the algorithms for constrained geometry optimization in MOLCAS in association with such studies.
Journal of Computational Chemistry | 2016
Francesco Aquilante; Jochen Autschbach; Rebecca K. Carlson; Liviu F. Chibotaru; Mickaël G. Delcey; Luca De Vico; Ignacio Fdez. Galván; Nicolas Ferré; Luis Manuel Frutos; Laura Gagliardi; Marco Garavelli; Angelo Giussani; Chad E. Hoyer; Giovanni Li Manni; Hans Lischka; Dongxia Ma; Per Åke Malmqvist; Thomas Müller; Artur Nenov; Massimo Olivucci; Thomas Bondo Pedersen; Daoling Peng; Felix Plasser; Ben Pritchard; Markus Reiher; Ivan Rivalta; Igor Schapiro; Javier Segarra-Martí; Michael Stenrup; Donald G. Truhlar
In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas–Kroll–Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC‐PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large‐scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
Journal of Chemical Physics | 2002
Alexander Wolf; Markus Reiher; Bernd A. Hess
We derive the most general parametrization of the unitary matrices in the Douglas–Kroll (DK) transformation sequence for relativistic electronic structure calculations. It is applied for a detailed analysis of the generalized DK transformation up to fifth order in the external potential. While DKH2–DKH4 are independent of the parametrization of the unitary matrices, DKH5 turns out to be dependent on the third expansion coefficient of the innermost unitary transformation which is carried out after the initial free-particle Foldy–Wouthuysen transformation. The freedom in the choice of this expansion coefficient vanishes consistently if the optimum unitary transformation is sought for. Since the standard protocol of the DK method is the application of unitary transformations to the one-electron Dirac operator, we analyze the DKH procedure up to fifth order for hydrogenlike atoms. We find remarkable accuracy of the higher-order DK corrections as compared to the exact Dirac ground state energy. In the case of ...
Journal of Chemical Physics | 2004
Markus Reiher; Alexander Wolf
In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented.
Journal of Computational Chemistry | 2002
Johannes Neugebauer; Markus Reiher; Carsten Kind; Bernd A. Hess
In this work we demonstrate how different modern quantum chemical methods can be efficiently combined and applied for the calculation of the vibrational modes and spectra of large molecules. We are aiming at harmonic force fields, and infrared as well as Raman intensities within the double harmonic approximation, because consideration of higher order terms is only feasible for small molecules. In particular, density functional methods have evolved to a powerful quantum chemical tool for the determination of the electronic structure of molecules in the last decade. Underlying theoretical concepts for the calculation of intensities are reviewed, emphasizing necessary approximations and formal aspects of the introduced quantities, which are often not explicated in detail in elementary treatments of this topic. It is shown how complex quantum chemistry program packages can be interfaced to new programs in order to calculate IR and Raman spectra. The advantages of numerical differentiation of analytical gradients, dipole moments, and static, as well as dynamic polarizabilities, are pointed out. We carefully investigate the influence of the basis set size on polarizabilities and their spatial derivatives. This leads us to the construction of a hybrid basis set, which is equally well suited for the calculation of vibrational frequencies and Raman intensities. The efficiency is demonstrated for the highly symmetric C60, for which we present the first all‐electron density functional calculation of its Raman spectrum.
Journal of Chemical Physics | 2002
Oliver Salomon; Markus Reiher; Bernd A. Hess
The exact exchange part in hybrid density functionals is analyzed with respect to the prediction of ground state multiplicities. It has been found [M. Reiher, O. Salomon, and B. A. Hess, Theor. Chem. Acc., 107, 48 (2001)] that pure and hybrid density functionals yield energy splittings between high-spin and low-spin states of Fe–sulfur complexes that differ by more than 100 kJ/mol and thus fail to reliably predict the correct multiplicity of the ground state. This deviation can lead to meaningless reaction energetics for metal-catalyzed reactions. The finding that the energy splitting depends linearly on the exact exchange admixture parameter led to a new parametrization of the B3LYP functional which was dubbed B3LYP⋆. In the present paper we investigate the generality and transferability of this functional. We study the extent to which the exact exchange admixture affects the thermochemistry validated with respect to the reference data set of molecules from the G2 test set. Metallocenes and bis(benzene) ...
Journal of Chemical Physics | 2004
Markus Reiher; Alexander Wolf
Exact decoupling of positive- and negative-energy states in relativistic quantum chemistry is discussed in the framework of unitary transformation techniques. The obscure situation that each scheme of decoupling transformations relies on different, but very special parametrizations of the employed unitary matrices is critically analyzed. By applying the most general power series ansatz for the parametrization of the unitary matrices it is shown that all transformation protocols for decoupling the Dirac Hamiltonian have necessarily to start with an initial free-particle Foldy-Wouthuysen step. The purely numerical iteration scheme applying X-operator techniques to the Barysz-Sadlej-Snijders (BSS) Hamiltonian is compared to the analytical schemes of the Foldy-Wouthuysen (FW) and Douglas-Kroll-Hess (DKH) approaches. Relying on an illegal 1/c expansion of the Dirac Hamiltonian around the nonrelativistic limit, any higher-order FW transformation is in principle ill defined and doomed to fail, irrespective of the specific features of the external potential. It is shown that the DKH method is the only valid analytic unitary transformation scheme for the Dirac Hamiltonian. Its exact infinite-order version can be realized purely numerically by the BSS scheme, which is only able to yield matrix representations of the decoupled Hamiltonian but no analytic expressions for this operator. It is explained why a straightforward numerical iterative extension of the DKH procedure to arbitrary order employing matrix representations is not feasible within standard one-component electronic structure programs. A more sophisticated ansatz based on a symbolical evaluation of the DKH operators via a suitable parser routine is needed instead and introduced in Part II of this work.
Journal of Chemical Physics | 2008
Konrad H. Marti; Irina Malkin Ondík; Gerrit Moritz; Markus Reiher
The accurate first-principles calculation of relative energies of transition metal complexes and clusters is still one of the great challenges for quantum chemistry. Dense lying electronic states and near degeneracies make accurate predictions difficult, and multireference methods with large active spaces are required. Often density functional theory calculations are employed for feasibility reasons, but their actual accuracy for a given system is usually difficult to assess (also because accurate ab initio reference data are lacking). In this work we study the performance of the density matrix renormalization group algorithm for the prediction of relative energies of transition metal complexes and clusters of different spin and molecular structure. In particular, the focus is on the relative energetical order of electronic states of different spin for mononuclear complexes and on the relative energy of different isomers of dinuclear oxo-bridged copper clusters.
Journal of Chemical Physics | 2010
Samuel Fux; Christoph R. Jacob; Johannes Neugebauer; Lucas Visscher; Markus Reiher
The frozen-density embedding (FDE) scheme [Wesolowski and Warshel, J. Phys. Chem. 97, 8050 (1993)] relies on the use of approximations for the kinetic-energy component v(T)[rho(1),rho(2)] of the embedding potential. While with approximations derived from generalized-gradient approximation kinetic-energy density functional weak interactions between subsystems such as hydrogen bonds can be described rather accurately, these approximations break down for bonds with a covalent character. Thus, to be able to directly apply the FDE scheme to subsystems connected by covalent bonds, improved approximations to v(T) are needed. As a first step toward this goal, we have implemented a method for the numerical calculation of accurate references for v(T). We present accurate embedding potentials for a selected set of model systems, in which the subsystems are connected by hydrogen bonds of various strength (water dimer and F-H-F(-)), a coordination bond (ammonia borane), and a prototypical covalent bond (ethane). These accurate potentials are analyzed and compared to those obtained from popular kinetic-energy density functionals.
International Journal of Quantum Chemistry | 2012
Christoph R. Jacob; Markus Reiher
The accurate description of open-shell molecules, in particular of transition metal complexes and clusters, is still an important challenge for quantum chemistry. Although density-functional theory (DFT) is widely applied in this area, the sometimes severe limitations of its currently available approximate realizations often preclude its application as a predictive theory. Here, we review the foundations of DFT applied to open-shell systems, both within the nonrelativistic and the relativistic framework. In particular, we provide an in-depth discussion of the exact theory, with a focus on the role of the spin density and possibilities for targeting specific spin states. It turns out that different options exist for setting up Kohn–Sham DFT schemes for open-shell systems, which imply different definitions of the exchange–correlation energy functional and lead to different exact conditions on this functional. Finally, we suggest possible directions for future developments.