Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Tassone is active.

Publication


Featured researches published by Christopher J. Tassone.


Journal of the American Chemical Society | 2013

Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation

Mark S. Chen; Olivia P. Lee; Jeremy R. Niskala; Alan T. Yiu; Christopher J. Tassone; Kristin Schmidt; Pierre M. Beaujuge; Seita Onishi; Michael F. Toney; Alex Zettl; Jean M. J. Fréchet

Efficient charge carrier transport in organic field-effect transistors (OFETs) often requires thin films that display long-range order and close π-π packing that is oriented in-plane with the substrate. Although some polymers have achieved high field-effect mobility with such solid-state properties, there are currently few general strategies for controlling the orientation of π-stacking within polymer films. In order to probe structural effects on polymer-packing alignment, furan-containing diketopyrrolopyrrole (DPP) polymers with similar optoelectronic properties were synthesized with either linear hexadecyl or branched 2-butyloctyl side chains. Differences in polymer solubility were observed and attributed to variation in side-chain shape and polymer backbone curvature. Averaged field-effect hole mobilities of the polymers range from 0.19 to 1.82 cm(2)/V·s, where PDPP3F-C16 is the least soluble polymer and provides the highest maximum mobility of 2.25 cm(2)/V·s. Analysis of the films by AFM and GIXD reveal that less soluble polymers with linear side chains exhibit larger crystalline domains, pack considerably more closely, and align with a greater preference for in-plane π-π packing. Characterization of the polymer solutions prior to spin-coating shows a correlation between early onset nanoscale aggregation and the formation of films with highly oriented in-plane π-stacking. This effect is further observed when nonsolvent is added to PDPP3F-BO solutions to induce aggregation, which results in films with increased nanostructural order, in-plane π-π orientation, and field-effect hole mobilities. Since nearly all π-conjugated materials may be coaxed to aggregate, this strategy for enhancing solid-state properties and OFET performance has applicability to a wide variety of organic electronic materials.


Advanced Materials | 2014

A Mechanistic Understanding of Processing Additive‐Induced Efficiency Enhancement in Bulk Heterojunction Organic Solar Cells

Kristin Schmidt; Christopher J. Tassone; Jeremy R. Niskala; Alan T. Yiu; Olivia P. Lee; Thomas M. Weiss; Cheng Wang; Jean M. J. Fréchet; Pierre M. Beaujuge; Michael F. Toney

The addition of processing additives is a widely used approach to increase power conversion efficiencies for many organic solar cells. We present how additives change the polymer conformation in the casting solution leading to a more intermixed phase-segregated network structure of the active layer which in turn results in a 5-fold enhancement in efficiency.


Nature Communications | 2016

Structural control of mixed ionic and electronic transport in conducting polymers.

Jonathan Rivnay; Sahika Inal; Brian A. Collins; Michele Sessolo; Eleni Stavrinidou; Xenofon Strakosas; Christopher J. Tassone; Dean M. DeLongchamp; George G. Malliaras

Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. We quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. These findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.


ACS Nano | 2013

Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors.

Huiliang Wang; Jianguo Mei; Peng Liu; Kristin Schmidt; Gonzalo Jiménez-Osés; Sílvia Osuna; Lei Fang; Christopher J. Tassone; Arjan P. Zoombelt; Anatoliy N. Sokolov; K. N. Houk; Michael F. Toney; Zhenan Bao

We report a simple and scalable method to enrich large quantities of semiconducting arc-discharged single-walled carbon nanotubes (SWNTs) with diameters of 1.1-1.8 nm using dithiafulvalene/thiophene copolymers. Stable solutions of highly individualized and highly enriched semiconducting SWNTs were obtained after a simple sonication and centrifuge process. Molecular dynamics (MD) simulations of polymer backbone interactions with and without side chains indicated that the presence of long alkyl side chains gave rise to the selectivity toward semiconducting tubes, indicating the importance of the roles of the side chains to both solubilize and confer selectivity to the polymers. We found that, by increasing the ratio of thiophene to dithiafulvalene units in the polymer backbone (from pDTFF-1T to pDTFF-3T), we can slightly improve the selectivity toward semiconducting SWNTs. This is likely due to the more flexible backbone of pDTFF-3T that allows the favorable wrapping of SWNTs with certain chirality as characterized by small-angle X-ray scattering. However, the dispersion yield was reduced from pDTFF-1T to pDTFF-3T. MD simulations showed that the reduction is due to the smaller polymer/SWNT contact area, which reduces the dispersion ability of pDTFF-3T. These experimental and modeling results provide a better understanding for future rational design of polymers for sorting SWNTs. Finally, high on/off ratio solution-processed thin film transistors were fabricated from the sorted SWNTs to confirm the selective dispersion of semiconducting arc-discharge SWNTs.


ACS Applied Materials & Interfaces | 2016

Tuning the Morphology of Solution-Sheared P3HT:PCBM Films

Julia Reinspach; Ying Diao; Gaurav Giri; Torsten Sachse; Kemar England; Yan Zhou; Christopher J. Tassone; Brian J. Worfolk; Martin Presselt; Michael F. Toney; Stefan C. B. Mannsfeld; Zhenan Bao

UNLABELLED Organic bulk heterojunction (BHJ) solar cells are a promising alternative for future clean-energy applications. However, to become attractive for consumer applications, such as wearable, flexible, or semitransparent power-generating electronics, they need to be manufactured by high-throughput, low-cost, large-area-capable printing techniques. However, most research reported on BHJ solar cells is conducted using spin coating, a single batch fabrication method, thus limiting the reported results to the research lab. In this work, we investigate the morphology of solution-sheared films for BHJ solar cell applications, using the widely studied model blend P3HT:PCBM. Solution shearing is a coating technique that is upscalable to industrial manufacturing processes and has demonstrated to yield record performance organic field-effect transistors. Using grazing incident small-angle X-ray scattering, grazing incident wide-angle X-ray scattering, and UV-vis spectroscopy, we investigate the influence of solvent, film drying time, and substrate temperature on P3HT aggregation, conjugation length, crystallite orientation, and PCBM domain size. One important finding of this study is that, in contrast to spin-coated films, the P3HT molecular orientation can be controlled by the substrate chemistry, with PEDOT PSS substrates yielding face-on orientation at the substrate-film interface, an orientation highly favorable for organic solar cells.


Small | 2015

Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics

Huiliang Wang; Bing Hsieh; Gonzalo Jiménez-Osés; Peng Liu; Christopher J. Tassone; Ying Diao; Ting Lei; K. N. Houk; Zhenan Bao

Regioregular poly(3-alkylthiophene) (P3AT) polymers have been previously reported for the selective, high-yield dispersion of semiconducting single-walled carbon nanotubes (SWCNTs) in toluene. Here, five alternative solvents are investigated, namely, tetrahydrofuran, decalin, tetralin, m-xylene, and o-xylene, for the dispersion of SWCNTs by poly(3-dodecylthiophene) P3DDT. The dispersion yield could be increased to over 40% using decalin or o-xylene as the solvents while maintaining high selectivity towards semiconducting SWCNTs. Molecular dynamics (MD) simulations in explicit solvents are used to explain the improved sorting yield. In addition, a general mechanism is proposed to explain the selective dispersion of semiconducting SWCNTs by conjugated polymers. The possibility to perform selective sorting of semiconducting SWCNTs using various solvents provides a greater diversity of semiconducting SWCNT ink properties, such as boiling point, viscosity, and surface tension as well as toxicity. The efficacy of these new semiconducting SWCNT inks is demonstrated by using the high boiling point and high viscosity solvent tetralin for inkjet-printed transistors, where solvent properties are more compatible with the inkjet printing head and improved droplet formation.


Nature | 2017

High-temperature crystallization of nanocrystals into three-dimensional superlattices

Liheng Wu; Joshua J. Willis; Ian Salmon McKay; Benjamin T. Diroll; Jian Qin; Matteo Cargnello; Christopher J. Tassone

Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.


Journal of the American Chemical Society | 2013

Efficient energy sensitization of C60 and application to organic photovoltaics.

Cong Trinh; Kent O. Kirlikovali; Andrew N. Bartynski; Christopher J. Tassone; Michael F. Toney; George F. Burkhard; Michael D. McGehee; Peter I. Djurovich; Mark E. Thompson

Fullerenes are currently the most popular electron-acceptor material used in organic photovoltaics (OPVs) due to their superior properties, such as good electron conductivity and efficient charge separation at the donor/acceptor interface. However, low absorptivity in the visible spectral region is a significant drawback of fullerenes. In this study, we have designed a zinc chlorodipyrrin derivative (ZCl) that absorbs strongly in the visible region (450-600 nm) with an optical density 7-fold higher than a C60 film. ZCl efficiently transfers absorbed photoenergy to C60 in mixed films. Application of ZCl as an energy sensitizer in OPV devices leads to an increase in the photocurrent from the acceptor layer, without changing the other device characteristics, i.e., open circuit voltage and fill factor. For example, C60-based OPVs with and without the sensitizer give 4.03 and 3.05 mA/cm(2), respectively, while both have V(OC) = 0.88 V and FF = 0.44. Our ZCl sensitization approach improves the absorbance of the electron-acceptor layer while still utilizing the beneficial characteristics of C60 in OPVs.


Journal of the American Chemical Society | 2017

Systematic Identification of Promoters for Methane Oxidation Catalysts Using Size- and Composition-Controlled Pd-Based Bimetallic Nanocrystals

Joshua J. Willis; Emmett D. Goodman; Liheng Wu; Andrew R. Riscoe; Pedro Martins; Christopher J. Tassone; Matteo Cargnello

Promoters enhance the performance of catalytic active phases by increasing rates, stability, and/or selectivity. The process of identifying promoters is in most cases empirical and relies on testing a broad range of catalysts prepared with the random deposition of active and promoter phases, typically with no fine control over their localization. This issue is particularly relevant in supported bimetallic systems, where two metals are codeposited onto high-surface area materials. We here report the use of colloidal bimetallic nanocrystals to produce catalysts where the active and promoter phases are colocalized to a fine extent. This strategy enables a systematic approach to study the promotional effects of several transition metals on palladium catalysts for methane oxidation. In order to achieve these goals, we demonstrate a single synthetic protocol to obtain uniform palladium-based bimetallic nanocrystals (PdM, M = V, Mn, Fe, Co, Ni, Zn, Sn, and potentially extendable to other metal combinations) with a wide variety of compositions and sizes based on high-temperature thermal decomposition of readily available precursors. Once the nanocrystals are supported onto oxide materials, thermal treatments in air cause segregation of the base metal oxide phase in close proximity to the Pd phase. We demonstrate that some metals (Fe, Co, and Sn) inhibit the sintering of the active Pd metal phase, while others (Ni and Zn) increase its intrinsic activity compared to a monometallic Pd catalyst. This procedure can be generalized to systematically investigate the promotional effects of metal and metal oxide phases for a variety of active metal-promoter combinations and catalytic reactions.


Review of Scientific Instruments | 2018

An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

Nicholas P. Calta; Jenny Wang; Andrew M. Kiss; Aiden A. Martin; Philip J. Depond; Gabriel M. Guss; Vivek Thampy; Anthony Y. Fong; Johanna Nelson Weker; Kevin H. Stone; Christopher J. Tassone; Matthew J. Kramer; Michael F. Toney; Anthony W. van Buuren; Manyalibo J. Matthews

In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

Collaboration


Dive into the Christopher J. Tassone's collaboration.

Top Co-Authors

Avatar

Michael F. Toney

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karsten Bruening

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre M. Beaujuge

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Wang

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge