Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Watson is active.

Publication


Featured researches published by Christopher J. Watson.


Current Opinion in Chemical Biology | 2002

In vivo neurochemical monitoring by microdialysis and capillary separations

Robert T. Kennedy; Christopher J. Watson; William E Haskins; David H Powell; Robert E. Strecker

Microdialysis is valuable for studying the neurochemical changes underlying behavior. Recent advances include the application of the high-sensitivity methods of capillary electrophoresis and capillary liquid chromatography with mass spectrometry to dialysate analysis. These methods have improved temporal resolution, spatial resolution, multi-analyte capability and potential for compound discovery.


Journal of Chromatography A | 2003

Aptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo

Qing Deng; Christopher J. Watson; Robert T. Kennedy

An anti-adenosine aptamer was evaluated as a stationary phase in packed capillary liquid chromatography. Using an aqueous mobile phase containing 20 mM Mg2+, adenosine was strongly retained on the column. A gradient of increasing Ni2+ (to 18 mM), which is presumed to complex with nitrogen atoms in adenosine involved in binding to the aptamer, eluted adenosine in a narrow zone. Up to 6 microl of 1.2 microM adenosine could be injected onto the 150-microm I.D. x 7 cm long column without loss of adenosine. With UV absorbance detection, the detection limit was 30 nM or 120 fmol (4 microl injected). Samples could be repetitively injected with 4.6% relative standard deviation in peak area. Columns were stable to at least 200 injections. The adenosine assay, which required no sample preparation, was used on microdialysis samples collected from the somatosensory cortex of chloral hydrate anesthetized rats. Total analysis times were short enough that dialysate samples could be injected every 5 min. Basal dialysate concentrations of adenosine stabilized at 87+/-10 nM (n=5) with the probe operated at 0.6 microl/min.


Anesthesiology | 2008

γ-Aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia

Giancarlo Vanini; Christopher J. Watson; Ralph Lydic; Helen A. Baghdoyan

Background:Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing γ-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that (1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and (2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. Methods:To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high-performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringers (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane, and induction time was quantified as loss of righting reflex. Breathing rate was also measured. Results:Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane covaried with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. Conclusion:Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate.


Neuroscience | 2007

Sleep and GABA levels in the oral part of rat pontine reticular formation are decreased by local and systemic administration of morphine.

Christopher J. Watson; Ralph Lydic; Helen A. Baghdoyan

Morphine, a mu-opioid receptor agonist, is a commonly prescribed treatment for pain. Although highly efficacious, morphine has many unwanted side effects including disruption of sleep and obtundation of wakefulness. One mechanism by which morphine alters sleep and wakefulness may be by modulating GABAergic signaling in brain regions regulating arousal, including the pontine reticular nucleus, oral part (PnO). This study used in vivo microdialysis in unanesthetized Sprague-Dawley rat to test the hypothesis that mu-opioid receptors modulate PnO GABA levels. Validation of the high performance liquid chromatographic technique used to quantify GABA was obtained by dialyzing the PnO (n=4 rats) with the GABA reuptake inhibitor nipecotic acid (500 microM). Nipecotic acid caused a 185+/-20% increase in PnO GABA levels, confirming chromatographic detection of GABA and demonstrating the existence of functional GABA transporters in rat PnO. Morphine caused a concentration-dependent decrease in PnO GABA levels (n=25 rats). Coadministration of morphine (100 microM) with naloxone (1 microM), a mu-opioid receptor antagonist, blocked the morphine-induced decrease in PnO GABA levels (n=5 rats). These results show for the first time that mu-opioid receptors in rat PnO modulate GABA levels. A second group of rats (n=6) was used to test the hypothesis that systemically administered morphine also decreases PnO GABA levels. I.v. morphine caused a significant (P<0.05) decrease (19%) in PnO GABA levels relative to control i.v. infusions of saline. Finally, microinjections followed by 2 h recordings of electroencephalogram and electromyogram tested the hypothesis that PnO morphine administration disrupts sleep (n=8 rats). Morphine significantly (P<0.05) increased the percent of time spent in wakefulness (65%) and significantly (P<0.05) decreased the percent of rapid eye movement (REM) sleep (-53%) and non-REM sleep (-69%). The neurochemical and behavioral data suggest that morphine may disrupt sleep, at least in part, by decreasing GABAergic transmission in the PnO.


Journal of Chromatography A | 2002

Automated capillary liquid chromatography for simultaneous determination of neuroactive amines and amino acids

Jacinth M. Mckenzie; Christopher J. Watson; Rebecca D. Rostand; Igor German; Steven R. Witowski; Robert T. Kennedy

A method for the separation and quantitative determination of neuroactive amino acids (aspartate, glutamate, citrulline, arginine, glycine, taurine, gamma-aminobutyric acid) and neuroactive amines (noradrenaline, dopamine and serotonin) in a single chromatographic analysis is presented. The method is based on pre-column derivatization with o-phthalaldehyde and tert.-butyl thiol, on-column preconcentration and separation using 50 microns I.D. packed capillary columns, and detection by amperometry. Mass limits of detection are 80-900 amol for all neurotransmitters with RSDs of 0.71 and 4.6% or better for retention time and peak area, respectively. The method was demonstrated by application to the determination of neurotransmitters in microdialysis samples collected from striatum of live rats and tissue samples extracted from butterfly brains.


Pharmacology, Biochemistry and Behavior | 2004

Behavior-related alterations of striatal neurochemistry in a mouse model of stereotyped movement disorder

Michael F. Presti; Christopher J. Watson; Robert T. Kennedy; Mark C. K. Yang; Mark H. Lewis

Motor stereotypy is a common component of several developmental, genetic, and neuropsychiatric disorders. In animals, these behaviors can be induced or attenuated via pharmacological manipulation of specific neural loci comprising cortico basal ganglia-cortical feedback circuits, including the striatum. The present study employed the deer mouse model of spontaneous and persistent stereotypy to assess the involvement of several endogenous neurotransmitters and neuromodulators in mediating the expression of the stereotypic behaviors (i.e., repetitive hindlimb jumping) exhibited by these mice. This was accomplished by employing a microdialysis sampling system coupled on-line to capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection apparatus. Given the 13-s temporal resolution for analyte measurement afforded by this system, discrete behavior-related alterations in striatal neurochemical concentrations were detected. Rearing behavior was found to be associated with significant and selective elevations of striatal glutamate (Glu) and aspartate (Asp) concentrations. Moreover, rearing was found to most frequently precede repetitive jumping. The results also indicated that alterations in striatal serine (Ser) concentrations were involved in the modulation of locomotor activity. The present findings support a role of the striatal glutamatergic system in the mediation of spontaneous stereotypic behavior and suggest a potential neuronal mechanism by which transition to stereotypy occurs in these mice. Moreover, the present findings demonstrate the usefulness of the microdialysis system employed in studying the neurochemical substrates of rapidly transitioning behavior.


Journal of Neuroscience Methods | 2007

Microdialysis coupled on-line to capillary liquid chromatography with tandem mass spectrometry for monitoring acetylcholine in vivo.

Holly M. Shackman; Minshan Shou; Nicholas A. Cellar; Christopher J. Watson; Robert T. Kennedy

Capillary liquid chromatography-mass spectrometry (cLC-MS) was coupled on-line to microdialysis sampling to monitor endogenous acetylcholine (ACh) from the rodent brain. In vivo microdialysate sampled at 0.6 microL/min from the striatum of ketamine or chloral hydrate anesthetized rats was loaded onto a sample loop and then injected onto a approximately 5 cm long strong cation exchange (SCX) capillary column. A step gradient was used to separate the analyte from ionization suppressing salts contained in dialysate in 2.4 min. Sampling coupled on-line with cLC-MS allowed for high temporal resolution (data points at 2.4 min intervals), good reproducibility (10-15% relative standard deviation, R.S.D.), and sensitive limits of detection (0.04 nM or 8 amol injected). The method successfully monitored basal and stimulated levels (induced by increased K+ concentrations) of ACh from the anesthetized rat without necessitating perfusion of an acetylcholinesterase (AChE) inhibitor. Absolute and percent basal levels of ACh from rats receiving different anesthetics were also compared.


Journal of Neurochemistry | 2011

Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation

Christopher J. Watson; Ralph Lydic; Helen A. Baghdoyan

J. Neurochem. (2011) 118, 571–580.


Alcoholism: Clinical and Experimental Research | 2004

Differential Increase in Taurine Levels by Low-Dose Ethanol in the Dorsal and Ventral Striatum Revealed by Microdialysis With On-Line Capillary Electrophoresis

Anthony Smith; Christopher J. Watson; K. J. Frantz; Bärbel Eppler; Robert T. Kennedy; Joanna Peris

Ethanol increases taurine efflux in the nucleus accumbens or ventral striatum (VS), a dopaminergic terminal region involved in positive reinforcement. However, this has been found only at ethanol doses above 1 g/kg intraperitoneally, which is higher than what most rats will self-administer. We used a sensitive on-line assay of microdialysate content to test whether lower doses of ethanol selectively increase taurine efflux in VS as opposed to other dopaminergic regions not involved in reinforcement (e.g., dorsal striatum; DS). Adult male rats with microdialysis probes in VS or DS were injected with ethanol (0, 0.5, 1, and 2 g/kg intraperitoneally), and the amino acid content of the dialysate was measured every 11 sec using capillary electrophoresis and laser-induced fluorescence detection. In VS, 0.5 g/kg ethanol significantly increased taurine levels by 20% for 10 min. A similar increase was seen after 1 g/kg ethanol, which lasted for about 20 min after injection. A two-phased taurine efflux was observed with the 2.0 g/kg dose, where taurine was increased by 2-fold after 5 min but it remained elevated by 30% for at least 60 min. In contrast, DS exhibited much smaller dose-related increases in taurine. Glycine, glutamate, serine, and gamma-aminobutyric acid were not systematically affected by lower doses of ethanol; however, 2 g/kg slowly decreased these amino acids in both brain regions during the hour after injection. These data implicate a possible role of taurine in the mechanism of action of ethanol in the VS. The high sensitivity and time resolution afforded by capillary electrophoresis and laser-induced fluorescence detection will be useful for detecting subtle changes of neuronally active amino acids levels due to low doses of ethanol.


Neuroscience | 2014

Adenosine A1 receptors in mouse pontine reticular formation modulate nociception only in the presence of systemic leptin

Sarah L. Watson; Christopher J. Watson; Helen A. Baghdoyan; Ralph Lydic

Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n=14) mice and leptin-deficient, obese B6.Cg-Lep(ob)/J (obese, n=10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A₁ receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A₁ receptor agonist N(6)-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p=0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p=0.0003) concentration-dependent increase in %MPE. SPA also significantly (p<0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of SMLA into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A₁ receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A₁ receptors localized to the pontine reticular formation significantly alter nociception.

Collaboration


Dive into the Christopher J. Watson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph Lydic

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge